Response properties and organization of nociceptive neurons in area 1 of monkey primary somatosensory cortex.

J Neurophysiol

Pain and Neurosensory Mechanisms Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892,

Published: August 2000

The organization and response properties of nociceptive neurons in area 1 of the primary somatosensory cortex (SI) of anesthetized monkeys were examined. The receptive fields of nociceptive neurons were classified as either wide-dynamic-range (WDR) neurons that were preferentially responsive to noxious mechanical stimulation, or nociceptive specific (NS) that were responsive to only noxious stimuli. The cortical locations and the responses of the two classes of neurons were compared. An examination of the neuronal stimulus-response functions obtained during noxious thermal stimulation of the glabrous skin of the foot or the hand indicated that WDR neurons exhibited significantly greater sensitivity to noxious thermal stimuli than did NS neurons. The receptive fields of WDR neurons were significantly larger than the receptive fields of NS neurons. Nociceptive SI neurons were somatotopically organized. Nociceptive neurons with receptive fields on the foot were located more medial in area 1 of SI than those with receptive fields on the hand. In the foot representation, the recording sites of nociceptive neurons were near the boundary between areas 3b and 1, whereas in the hand area, there was a tendency for them to be located more caudal in area 1. The majority of nociceptive neurons were located in the middle layers (III and IV) of area 1. The fact that nociceptive neurons were not evenly distributed across the layers of area 1 suggested that columns of nociceptive neurons probably do not exist in the somatosensory cortex. In electrode tracks where nociceptive neurons were found, approximately half of all subsequently isolated neurons were also classified as nociceptive. Low-threshold mechanoreceptive (LTM) neurons were intermingled with nociceptive neurons. Both WDR and NS neurons were found in close proximity to one another. In instances where the receptive field shifted, subsequently isolated cells were also classified as nociceptive. These data suggest that nociceptive neurons in area 1 of SI are organized in vertically orientated aggregations or clusters in layers III and IV.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.2000.84.2.719DOI Listing

Publication Analysis

Top Keywords

nociceptive neurons
48
neurons
21
receptive fields
20
wdr neurons
16
nociceptive
15
neurons area
12
somatosensory cortex
12
response properties
8
area
8
primary somatosensory
8

Similar Publications

From pain to meningitis: bacteria hijack nociceptors to promote meningitis.

Front Immunol

January 2025

National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China.

Bacterial meningitis is a severe and life-threatening infection of the central nervous system (CNS), primarily caused by and . This condition carries a high risk of mortality and severe neurological sequelae, such as cognitive impairment and epilepsy. Pain, a central feature of meningitis, results from the activation of nociceptor sensory neurons by inflammatory mediators or bacterial toxins.

View Article and Find Full Text PDF

The Ca 3.2 isoform of T-type voltage-gated calcium channels plays a crucial role in regulating the excitability of nociceptive neurons; the endogenous molecules that modulate its activity, however, remain poorly understood. Here, we used serum proteomics and patch-clamp physiology to discover a novel peptide albumin (1-26) that facilitates channel gating by chelating trace metals that tonically inhibit Ca 3.

View Article and Find Full Text PDF

Protease-activated receptor 2 (PAR2) is a central regulator of intestinal barrier function, inflammation and pain. Upregulated intestinal proteolysis and PAR2-signaling are implicated in inflammatory bowel diseases (IBDs) and irritable bowel syndrome (IBS). To identify potential bacterial regulators of PAR2 activity, we developed a functional assay for PAR2 processing and used it to screen conditioned media from a library of diverse gut commensal microbes.

View Article and Find Full Text PDF

Recording and manipulating neuronal ensembles that underlie cognition and behavior is challenging. FLARE is a light- and calcium-gated transcriptional reporting system for labeling activated neurons on the order of minutes. However, FLARE is limited by its sensitivity to prolonged neuronal activities.

View Article and Find Full Text PDF

Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!