Regulation of the microphthalmia-associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10.

J Biol Chem

INSERM U385, Biologie et Physiopathologie de la Peau, Faculté de Médecine, Avenue de Valombrose, Nice, 06107 Cedex, France.

Published: October 2000

The absence of melanocytes from the cochlea and epidermis is responsible of deafness and hypopigmentation, two symptoms shared by the four Waardenburg syndrome (WS) subtypes. Microphthalmia-associated transcription factor (MITF) controls melanocyte survival and differentiation. Mutations, which impair MITF function or expression, result in an abnormal melanocyte development leading to the WS2. WS1 and WS3 are caused by mutation in the gene encoding the transcription factor Pax3, which regulates MITF expression. Recently, mutations in SOX10, a gene encoding a SRY-related transcription factor, have been reported in patients with WS4. However, the molecular basis of the defective melanocyte development in these patients remained to be elucidated. In the present report, we demonstrate that Sox10 is a strong activator of the MITF promoter, and we identify a Sox10 binding site between -264 and -266 of the MITF promoter. Finally, we show that three SOX10 mutations found in WS4 abolish the transcriptional activity of the resulting Sox10 proteins toward the MITF promoter. Taken together, our observations bring new and meaningful information concerning the molecular process that leads to a defective melanocyte development in WS4 patients with SOX10 mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.C000445200DOI Listing

Publication Analysis

Top Keywords

transcription factor
16
melanocyte development
12
mitf promoter
12
microphthalmia-associated transcription
8
waardenburg syndrome
8
gene encoding
8
defective melanocyte
8
sox10 mutations
8
sox10
7
mitf
6

Similar Publications

Non-canonical Wnt signaling pathway activated NFATC3 promotes GDF15 expression in MASH: prospective analyses of UK biobank proteomic data.

Hepatol Int

January 2025

National Clinical Research Center for Digestive Disease, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Background: Our previous research demonstrated that growth differentiation factor 15 (GDF15) exhibited superior predictive capability for metabolic dysfunction-associated steatohepatitis (MASH) development with an AUC of 0.86 at 10 years before disease diagnosis. However, the specific pathways and molecular mechanisms associated with GDF15 expression during MASH development remain to be fully investigated in humans.

View Article and Find Full Text PDF

A novel ubiquitination-related gene signature for overall survival prediction in patients with liver hepatocellular carcinoma.

Discov Oncol

January 2025

Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.

Liver hepatocellular carcinoma (LIHC) is a highly heterogeneous disease, necessitating the discovery of novel biomarkers to enhance individualized treatment approaches. Recent research has shown the significant involvement of ubiquitin-related genes (UbRGs) in the progression of LIHC. However, the prognostic value of UbRGs in LIHC has not been investigated.

View Article and Find Full Text PDF

Role of polyamines in intestinal mucosal barrier function.

Semin Immunopathol

January 2025

Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.

The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy.

View Article and Find Full Text PDF

CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway.

Sleep Breath

January 2025

Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.

Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.

View Article and Find Full Text PDF

Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!