The v-Src oncoprotein is translocated to integrin-linked focal adhesions, where its tyrosine kinase activity induces adhesion disruption and cell transformation. We previously demonstrated that the intracellular targeting of Src is dependent on the actin cytoskeleton, under the control of the Rho family of small G proteins. However, the assembly of v-Src into focal adhesions does not require its catalytic activity or myristylation-dependent membrane association. Here, we report that the SH3 domain is essential for the assembly of focal adhesions containing the oncoprotein by mediating a switch from a microtubule-dependent, perinuclear localization to actin-associated focal adhesions; furthermore, v-Src translocation to focal adhesions requires myosin activity, at least under normal conditions when the actin cytoskeleton is being dynamically regulated. Although the SH3 domain of v-Src is also necessary for its association with focal adhesion kinase (FAK), which is often considered a likely candidate mediator of focal adhesion targeting via its carboxy-terminal targeting sequence, we show here that binding to FAK is not essential for the targeting of v-Src to focal adhesions. The p85 regulatory subunit of phosphatidylinositol (PI) 3-kinase also associates with v-Src in an SH3-dependent manner, but in this case inhibition of PI 3-kinase activity suppressed assembly of focal adhesions containing the oncoprotein. Thus, the Src SH3 domain, which binds PI 3-kinase and which is necessary for activation of Akt downstream, is required for the actin-dependent targeting of v-Src to focal adhesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC86126PMC
http://dx.doi.org/10.1128/MCB.20.17.6518-6536.2000DOI Listing

Publication Analysis

Top Keywords

focal adhesions
36
sh3 domain
16
v-src focal
16
targeting v-src
12
focal
11
adhesions
9
v-src
8
phosphatidylinositol 3-kinase
8
actin cytoskeleton
8
assembly focal
8

Similar Publications

Focal Adhesion Regulation as a Strategy against Kidney Fibrosis.

ACS Chem Biol

January 2025

Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, and Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China.

Chronic kidney fibrosis poses a significant global health challenge with effective therapeutic strategies remaining elusive. While cell-extracellular matrix (ECM) interactions are known to drive fibrosis progression, the specific role of focal adhesions (FAs) in kidney fibrosis is not fully understood. In this study, we investigated the role of FAs in kidney tubular epithelial cell fibrosis by employing precise nanogold patterning to modulate integrin distribution.

View Article and Find Full Text PDF

Genetically encoded tension sensors (GETSs) allow for quantifying forces experienced by intracellular proteins involved in mechanotransduction. The vast majority of GETSs are comprised of a FRET pair flanking an elastic "spring-like" domain that gradually extends in response to force. Because of ensemble averaging, the FRET signal generated by such analog sensors conceals forces that deviate from the average, and hence it is unknown if a subset of proteins experience greater magnitudes of force.

View Article and Find Full Text PDF

Paxillin (PXN) and focal adhesion kinase (FAK) are two major components of the focal adhesion complex, a multiprotein structure linking the intracellular cytoskeleton to the cell exterior. PXN interacts directly with the C-terminal targeting domain of FAK (FAT) via its intrinsically disordered N-terminal domain. This interaction is necessary and sufficient for localizing FAK to focal adhesions.

View Article and Find Full Text PDF

The dynamics of focal adhesions (FAs) are essential physiological processes involved in cell spreading, metastasis, and regulation of the actin cytoskeleton. FAs are complex structures comprising proteins, such as paxillin and zyxin, which interact with extracellular membranes and influence cell motility and morphology. Although related studies have been reported in various cancers, the function and molecular mechanisms of oral squamous cell carcinoma (OSCC) remain unknown.

View Article and Find Full Text PDF

Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!