Unlabelled: With high-resolution network transmission required for telemedicine, education, and guided-image acquisition, the impact of errors and transmission rates on image quality needs evaluation.

Methods: We transmitted clinical echocardiograms from 2 National Aeronautics and Space Administration (NASA) research centers with the use of Motion Picture Expert Group-2 (MPEG-2) encoding and asynchronous transmission mode (ATM) network protocol over the NASA Research and Education Network. Data rates and network quality (cell losses [CLR], errors [CER], and delay variability [CVD]) were altered and image quality was judged.

Results: At speeds of 3 to 5 megabits per second (Mbps), digital images were superior to those on videotape; at 2 Mbps, images were equivalent. Increasing CLR caused occasional, brief pauses. Extreme CER and CDV increases still yielded high-quality images.

Conclusions: Real-time echocardiographic acquisition, guidance, and transmission is feasible with the use of MPEG-2 and ATM with broadcast quality seen above 3 Mbps, even with severe network quality degradation. These techniques can be applied to telemedicine and used for planned echocardiography aboard the International Space Station.

Download full-text PDF

Source
http://dx.doi.org/10.1067/mje.2000.106075DOI Listing

Publication Analysis

Top Keywords

network quality
12
image quality
8
network
7
quality
6
real-time transmission
4
transmission full-motion
4
full-motion echocardiography
4
echocardiography high-speed
4
high-speed data
4
data network
4

Similar Publications

Speech Technology for Automatic Recognition and Assessment of Dysarthric Speech: An Overview.

J Speech Lang Hear Res

January 2025

Centre for Language Studies, Radboud University, Nijmegen, the Netherlands.

Purpose: In this review article, we present an extensive overview of recent developments in the area of dysarthric speech research. One of the key objectives of speech technology research is to improve the quality of life of its users, as evidenced by the focus of current research trends on creating inclusive conversational interfaces that cater to pathological speech, out of which dysarthric speech is an important example. Applications of speech technology research for dysarthric speech demand a clear understanding of the acoustics of dysarthric speech as well as of speech technologies, including machine learning and deep neural networks for speech processing.

View Article and Find Full Text PDF

Particle filtration efficiency (PFE) is a critical property of face masks, with the most common test methods using sodium chloride as a challenge aerosol. In the absence of bottom-up uncertainty budgets for PFE, interlaboratory comparisons provide an alternative route to robustly quantify the precision and bias of the method. This work presents the results of several interlaboratory comparisons of particle filtration efficiency performed across a network of laboratories.

View Article and Find Full Text PDF

In recent years, it was found that lysine malonylation modification can affect biological metabolism and play an important role in plant life activities. Platycodon grandiflorus, an economic crop and medicinal plant, had no reports on malonylation in the related literature. This study qualitatively introduces lysine malonylation in P.

View Article and Find Full Text PDF

Posttraining Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition.

Radiol Artif Intell

January 2025

From the Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15,81377 Munich, Germany (T.W., J.D., M.I.); Department of Statistics, LMU Munich, Munich, Germany (T.W., D.R.); and Munich Center for Machine Learning, Munich, Germany (T.W., J.D., D.R., M.I.).

Purpose To investigate whether the computational effort of 3D CT-based multiorgan segmentation with TotalSegmentator can be reduced via Tucker decomposition-based network compression. Materials and Methods In this retrospective study, Tucker decomposition was applied to the convolutional kernels of the TotalSegmentator model, an nnU-Net model trained on a comprehensive CT dataset for automatic segmentation of 117 anatomic structures. The proposed approach reduced the floating-point operations (FLOPs) and memory required during inference, offering an adjustable trade-off between computational efficiency and segmentation quality.

View Article and Find Full Text PDF

Background: Dosimetric commissioning and quality assurance (QA) for linear accelerators (LINACs) present a significant challenge for clinical physicists due to the high measurement workload and stringent precision standards. This challenge is exacerbated for radiosurgery LINACs because of increased measurement uncertainty and more demanding setup accuracy for small-field beams. Optimizing physicists' effort during beam measurements while ensuring the quality of the measured data is crucial for clinical efficiency and patient safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!