Primary osteoblasts derived from avian long bone have been evaluated in terms of spatial and temporal expression of known osteoblastic marker proteins during the early phases of cell culture. Confocal imaging of matrix proteins revealed that osteocalcin, bone sialoprotein, osteopontin, and osteonectin were restricted to the cell interior at day 4 of culture; secretion and deposition into the extra-cellular matrix of bone sialoprotein and osteopontin was evident at 8 and 12 days of culture. Osteocalcin and osteonectin were not deposited in the matrix within the timeframe of the study. Total collagen levels produced and alkaline phosphatase activity were substantial by day 4 of culture, and increased from that point 4.0- and 5.5-fold, respectively, by culture day 12. The expression of type I collagen, PTHrP receptor, osteopontin, bone sialoprotein and osteocalcin was followed by Northern blot analysis. Type I collagen and osteopontin mRNA were expressed at constant levels throughout the culture period. Over the 12 days of culture both PTH/PTHrP receptor and bone sialoprotein mRNA expression were found to increase by 2.3- and 2.5-fold, respectively. In contrast, the expression of osteocalcin message decreased by 2.5-fold by day 8 of culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1095-6433(00)00200-2 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan; Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan. Electronic address:
Impaired fracture healing in diabetic patients leads to prolonged morbidity and increased healthcare costs. Methylglyoxal (MG), a reactive metabolite elevated in diabetes, is implicated in various complications, but its direct impact on bone healing remains unclear. Here, using a non-diabetic murine tibial fracture model, we demonstrate that MG directly impairs fracture healing.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
First Operating Room, The First Hospital of Jilin University, Changchun, China. Electronic address:
Background: Certain peripheral proteins are believed to be involved in the development of Alzheimer's disease (AD), but the roles of other new protein biomarkers are still unclear. Current treatments aim to manage symptoms, but they are not effective in stopping the progression of the disease. New drug targets are needed to prevent Alzheimer's disease.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil.
Background: The use of ex vivo assays associated with biomaterials may allow the short-term visualization of a specific cell type response inserted in a local microenvironment. Blood is the first component to come into contact with biomaterials, providing blood clot formation, being substantial in new tissue formation. Thus, this research investigated the physiological blood clot (PhC) patterns formed in 3D scaffolds (SCAs), based on chitosan and 20% beta-tricalcium phosphate and its effect on osteogenesis.
View Article and Find Full Text PDFBone
December 2024
Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA. Electronic address:
Bone sialoprotein (Ibsp/BSP) is a bone-associated extracellular matrix protein. Ibsp knockout (Ibsp) mice exhibit defective alveolar bone formation, mineralization, and healing. We hypothesized BSP would rescue defective alveolar bone healing in a molar extraction model in Ibsp mice.
View Article and Find Full Text PDFClin Oral Investig
December 2024
Department of Stomatology, Hangzhou First People's Hospital Affiliated to West Lake University, No. 261, Huansha Road, Shangcheng District, Hangzhou, Zhejiang, 310006, China.
Objectives: Inflammation and osteoclast activity are important in various diseases, including periodontitis and osteoporosis. Farnesoid X receptor (FXR) has been identified as a promising target for modulating these processes. This study delved into the impact of FXR agonists on inflammation and periodontal regeneration using periodontitis models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!