In this study, we demonstrate that explanted neonatal rat retina can be maintained in culture for periods up to 3 weeks. The cultured retinas displayed a distinct layering that was almost identical to litter-matched retinas of the same age, but the majority of the ganglion cells did not survive and photoreceptor outer segments did not develop properly. Distinct synaptophysin immunoreactivity was expressed in both the inner and outer plexiform layers of cultured retina and the pattern mimicked that one observed in vivo. After 2-3 weeks in vitro, the inner retina expressed immunoreactivities to various components of the cholinergic and nitrergic transmitter systems, including nitric oxide activated cyclic GMP immunoreactivity. The investigated cell populations displayed similar distribution patterns as in situ, but morphological differences appeared in vitro. Such differences were mainly observed as irregularities in the arborization patterns in the inner part of the inner plexiform layer. We suggest that these discrepancies may arise as a result of reduced ganglion cell survival. Our observations demonstrate that some neurotransmitter systems develop in vitro and their neural circuitry appears similar to the in vivo situation. The presence of synapses, receptor proteins and transmitter substances implies that neural communication can occur in cultured retinas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0891-0618(00)00058-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!