Deletion of chromosome 10 is one of the most common chromosomal alterations in glioma. At 10p15, the telomeric region of the short arm of chromosome 10, loss of heterozygosity (LOH) has been frequently observed by microsatellite analysis, suggesting the presence of a tumor suppressor gene. We examined LOH in 34 gliomas on chromosome 10, and frequent LOH on 10p was detected on 10p15, in agreement with deletion mapping studies on chromosome 10. We then constructed a bacterial artificial chromosome (BAC) clone contig covering the critical region, which spanned the interval between D10S249 and D10S533 on 10p15. The map contained 68 BAC clones connected by 74 sequenced tag sites (STSs) and covered approximately 2.7 Mb, with one gap. A total of 74 STSs, including 6 microsatellite markers, 29 expressed sequenced tags (ESTs), and 39 BAC end STSs, were physically arranged. Twenty-eight ESTs were mapped in the interval between D10S249 and D10S559 (approximately 1200 kb), and another EST was mapped in the interval between D10S559 and D10S533 (approximately 1300 kb). This sequence-ready BAC clone contig map will be a basic resource for high-quality sequencing and positional cloning of the putative tumor suppressor gene at 10p15 in glioma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/geno.2000.6257 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!