We report on molecular dynamics simulations of major histocompatibility complex (MHC)-peptide complexes. Class I MHC molecules play an important role in cellular immunity by presenting antigenic peptides to cytotoxic T cells. Pockets in the peptide-binding groove of MHC molecules accommodate anchor side chains of the bound peptide. Amino acid substitutions in MHC affect differences in the peptide-anchor motifs. HLA-A*0217, human MHC class I molecule, differs from HLA-A*0201 only by three amino acid residues substitutions (positions 95, 97, and 99) at the floor of the peptide-binding groove. A*0217 showed a strong preference for Pro at position 3 (p3) and accepted Phe at p9 of its peptide ligands, but these preferences have not been found in other HLA-A2 ligands. To reveal the structural mechanism of these observations, the A*0217-peptide complexes were simulated by 1000 ps molecular dynamics at 300 K with explicit solvent molecules and compared with those of the A*0201-peptide complexes. We examined the distances between the anchor side chain of the bound peptide and the pocket, and the rms fluctuations of the bound peptides and the HLA molecules. On the basis of the results from our simulations, we propose that Pro at p3 serves as an optimum residue to lock the dominant anchor residue (p9) tightly into pocket F and to hold the peptide in the binding groove, rather than a secondary anchor residue fitting optimally the complementary pocket. We also found that Phe at p9 is used to occupy the space created by replacements of three amino acid residues at the floor within the groove. These findings would provide a novel understanding in the peptide-binding motifs of class I MHC molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1097-0282(20001015)54:5<318::AID-BIP30>3.0.CO;2-TDOI Listing

Publication Analysis

Top Keywords

peptide-binding groove
12
bound peptide
12
molecular dynamics
12
mhc molecules
12
amino acid
12
floor peptide-binding
8
strong preference
8
dynamics simulations
8
class mhc
8
anchor side
8

Similar Publications

The Role of Vimentin Peptide Citrullination in the Structure and Dynamics of HLA-DRB1 Rheumatoid Arthritis Risk-Associated Alleles.

Int J Mol Sci

December 2024

Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil.

Citrullination, a post-translational modification (PTM), plays a critical role in rheumatoid arthritis (RA) by triggering immune responses to citrullinated self-antigens. Some HLA-DRB1 genes encode molecules with the shared epitope (QKRAA/QRRAA) sequence in the peptide-binding groove which preferentially presents citrulline-modified peptides, like vimentin, that intensifies the immune response in RA. In this study, we used computational approaches to evaluate intermolecular interactions between vimentin peptide-ligands (with/without PTM) and HLA-DRB1 alleles associated with a significantly increased risk for RA development.

View Article and Find Full Text PDF

Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive.

View Article and Find Full Text PDF

Tumor-draining lymph node dendritic cells (DCs) are poor stimulators of tumor antigen-specific CD4 T cells; however, the mechanism behind this defect is unclear. We now show that, in tumor-draining lymph node DCs, a large proportion of major histocompatibility complex class II (MHC-II) molecules retains the class II-associated invariant chain peptide (CLIP) fragment of the invariant chain bound to the MHC-II peptide binding groove due to reduced expression of the peptide editor H2-M and enhanced activity of the CLIP-generating proteinase cathepsin S. The net effect of this is that MHC-II molecules are unable to efficiently bind antigenic peptides.

View Article and Find Full Text PDF

Class I MHC molecules present peptides derived from intracellular antigens on the cell surface for immune surveillance, and specific targeting of these peptide-MHC (pMHC) complexes could have considerable utility for treating diseases. Such targeting is challenging as it requires readout of the few outward facing peptide antigen residues and the avoidance of extensive contacts with the MHC carrier which is present on almost all cells. Here we describe the use of deep learning-based protein design tools to design small proteins that arc above the peptide binding groove of pMHC complexes and make extensive contacts with the peptide.

View Article and Find Full Text PDF

Structural insights into regulated intramembrane proteolysis by the positive alginate regulator MucP from Pseudomonas aeruginosa.

Biochem Biophys Res Commun

December 2024

College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China. Electronic address:

Regulated intramembrane proteolysis (RIP) is a fundamentally conserved mechanism involving sequential cleavage by a membrane-bound Site-1 protease (S1P) and a transmembrane Site-2 protease (S2P). In the opportunistic pathogen Pseudomonas aeruginosa, the alternate sigma factor σ activates alginate production and in turn is regulated by the MucABCD system. The anti-sigma factor MucA, which inhibits σ, is sequentially cleaved via RIP by AlgW (S1P) and MucP (S2P) respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!