A three dimensional structural model of oligopeptidase B (OpB) was constructed by homology modeling. High resolution X-ray structure of prolyl oligopeptidase (PEP), the only protein with sequential and functional homology was used as a template. Initial models of OpB were built by the MODELLER and were analysed by the PROCHECK programs. The best quality model was chosen for further refinement by two different techniques--either constrained molecular dynamics simulations or simulated annealing calculations starting from 500 K. The overall quality of each of the refined models was evaluated and the simulated annealing procedure found to be more effective. The refined model was analysed by different protein analysis programs including PROCHECK for the evaluation of the Ramachandran plot quality, PROSA for testing interaction energies and WHATIF for the calculation of packing quality. This structure was found to be satisfactory and also stable at room temperature as demonstrated by a 300 ps long unconstrained molecular dynamics simulation. Calculation of molecular electrostatic potentials revealed that the binding site of OpB is more negative than that of PEP, in accordance with the experimentally observed selectivity of OpB towards proteolysis at dibasic sites. A recently developed Monte Carlo docking method was used provide a structural rationale for the affinity differences measured between Z-Arg and Z-Arg-Arg substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1093-3263(99)00042-xDOI Listing

Publication Analysis

Top Keywords

model oligopeptidase
8
molecular dynamics
8
simulated annealing
8
construction model
4
oligopeptidase potential
4
potential processing
4
processing enzyme
4
enzyme prokaryotes
4
prokaryotes three
4
three dimensional
4

Similar Publications

Article Synopsis
  • * A study on S9 peptidase from Bacillus subtilis (S9bs) has confirmed its carboxypeptidase activity, which was previously unclear, highlighting key structural elements essential for this function.
  • * The research also revealed S9bs forms stable tetramers and identified its molecular arrangement, providing insights that could aid in therapeutic and drug design related to S9 family enzymes.
View Article and Find Full Text PDF

Celiac disease (CD) is a common autoimmune disorder in which the patients are unable to digest gluten, which is present in foods made up of wheat, barley and rye. Whilst diagnosis happens late in 80% of the cases, avoidance of such foods appears to be the common solution. Alternative management strategies are required for the patients and their families since CD is also genetically carried over.

View Article and Find Full Text PDF

Missense variants in CMS22 patients reveal that PREPL has both enzymatic and nonenzymatic functions.

JCI Insight

September 2024

Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium.

Article Synopsis
  • Congenital myasthenic syndrome-22 (CMS22) is a rare genetic condition linked to variations in the PREPL gene, with previous research focusing mainly on deletions and nonsense mutations.
  • This study investigates missense variants in PREPL from three CMS22 patients, revealing that these variants do not affect hydrolase activity, which contradicts existing diagnostic standards.
  • Structural analysis indicates that these missense variants interfere with protein interactions and highlight the significance of PREPL's nonhydrolytic functions, suggesting that CMS22 can arise from different types of genetic changes beyond just deletions.
View Article and Find Full Text PDF

Prolyl oligopeptidase (POP) is a compelling therapeutic target associated with aging and neurodegenerative disorders due to its pivotal role in neuropeptide processing. Despite initial promise demonstrated by early-stage POP inhibitors, their progress in clinical trials has been halted at Phase I or II. This impediment has prompted the pursuit of novel inhibitors.

View Article and Find Full Text PDF

Because of upregulated expression on cancer-associated fibroblasts, fibroblast activation protein (FAP) has emerged as an attractive biomarker for the imaging and therapy of solid tumors. Although many FAP ligands have already been developed for radiopharmaceutical therapies (RPTs), most suffer from inadequate tumor uptake, insufficient tumor residence times, or off-target accumulation in healthy tissues, suggesting a need for further improvements. A new FAP-targeted RPT with a novel ligand (FAP8-PEG-IP-DOTA) was designed by combining the desirable features of several previous ligand-targeted RPTs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!