Hydrogen nuclei located over a carbon-carbon double bond in a strong magnetic field experience NMR shielding effects that result from the magnetic anisotropy of the nearby double bond and various other intramolecular shielding effects. We have used GIAO, a subroutine in Gaussian 98, to calculate isotropic shielding values and to predict the proton NMR shielding increment for a simple model system: methane held in various orientations, positions, and distances over ethene. The average proton NMR shielding increments of several orientations of methane have been plotted versus the Cartesian coordinates of the methane protons relative to the center of ethene. A single empirical equation for predicting the NMR shielding experienced by protons over a carbon-carbon double bond has been developed from these data. The predictive capability of this equation has been validated by comparing the shielding increments for several alkenes calculated using our equation to the experimentally observed shielding increments. This equation predicts the NMR shielding effects more accurately than previous models that were based on fewer geometries of methane over ethene. In fact, deshielding is predicted by this equation for protons over the center and within about 3 A of a carbon-carbon double bond. This result is in sharp contrast to predictions made by the long-held McConnell "shielding cone" model found in nearly every textbook on NMR, but is consistent with experimental observations. The algorithm for predicting the (de)shielding increment for a proton over an alkene can be used in a spreadsheet on a PC or incorporated into software that estimates chemical shifts using additive substituent constants or a database of structures. In either application its use can substantially improve the accuracy of the estimated chemical shift of a proton in the vicinity of a carbon-carbon double bond, and thus assist in spectral assignments and in correct structure determination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1093-3263(99)00041-8DOI Listing

Publication Analysis

Top Keywords

double bond
24
carbon-carbon double
20
nmr shielding
20
shielding effects
12
shielding increments
12
shielding
9
algorithm predicting
8
proton nmr
8
double
6
bond
6

Similar Publications

Gas phase bond dissociation energies (BDE) O-H/N-H in hydroquinone (HQ), 4-aminophenol (AP), 1,4-phenylenediamine (PDA), 4-hydroxydiphenylamine (HDPA), N,N'-diphenyl-1,4-phenylenediamine (DPPDA) as well as in their phenoxyl/aminyl radicals have been determined using a combined technique of quantum chemical calculation. The technique included a series of DFT (PBE1PBE, TPSSTPSS, M06-2X), ab initio (DLPNO-CCSD(T)) methods with valence 3ξ-basis sets, composite methods of Gaussian family (G4) and Weizmann theory with ab initio Brueckner Doubles (W1BD), as well as reference reactions of different levels of structural similarity. W1BD method was used in combination with isodesmic reactions for BDE estimation (kJ∙mol) of compounds with the only aromatic fragment: BDE = 352.

View Article and Find Full Text PDF

Stereoselective Reaction Enabling Simultaneous Analysis of Carbon-Carbon Double-Bond Configuration and the Position of Monounsaturated Fatty Acids through UHPLC-ESI-MRM-MS.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China.

Monounsaturated fatty acids (MUFA) are an important class of nutrients and are involved in lipid metabolism. The positions of the C=C bond and cis-trans isomerism have a significant influence on their physiological activity. However, simultaneously detecting these two structural properties has been challenging due to multiple isomers of MUFA.

View Article and Find Full Text PDF

Palladium-Catalyzed Modular Synthesis of Thiophene-Fused Polycyclic Aromatics via Sequential C-H Activation.

Org Lett

January 2025

Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.

A palladium-catalyzed Catellani-type [2+2+2] annulation reaction of aryl iodides, bromothiophenes, and norbornadiene, which proceeds via a tandem Heck coupling/double C-H bond activation and retro-Diels-Alder pathway to access thiophene-fused polyaromatics, is reported. The key feature of this protocol represents a NBD/NBE retaining annulation.

View Article and Find Full Text PDF

Organic compounds present promising options for sustainable zinc battery electrodes. Nevertheless, the electrochemical properties of current organic electrodes still lag behind those of their inorganic counterparts. In this study, nitro groups were incorporated into pyrene-4, 5, 9, 10-tetraone (PTO), resulting in an elevated discharge voltage due to their strong electron-withdrawing capabilities.

View Article and Find Full Text PDF

In this paper, a series of novel quinazoline-4(3)-one-2-carbothioamide derivatives (8a-p) were designed and synthesized the Wilgerodt-Kindler reaction between 2-methylquinazoline-4-one 10 and amines using S/DMSO as the oxidizing system. Their characteristics were confirmed by IR, NMR, HRMS spectra, and their melting point. These novel derivatives (8a-p) were evaluated for their anti-inflammatory activity by inhibiting NO production in lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!