A single 3-minute bout of mechanical loading increases bone formation in the rat tibia. We hypothesized that more frequent, shorter loading bouts would elicit a greater osteogenic response than a single 3-minute bout. The right tibias of 36 adult female Sprague-Dawley rats were subjected to 360 bending cycles per day of a 54 N force delivered in 1, 2, 4, or 6 bouts on each of the 3 loading days. Rats in the 6-bouts/day group received 60 bending cycles per bout (60 x 6); rats in the 4-bouts/day group received 90 bending cycles per bout (90 x 4); the 2- and 1-bouts/day groups received 180 and 360 bending cycles per bout, respectively (180 x 2 and 360 x 1). A nonloaded, age-matched control group (0 x 0) and two sham-bending groups (60 x 6 and 360 x 1) also were included. Fluorochrome labeling revealed a 10-fold increase in endocortical lamellar bone formation rate (BFR/bone surface [BS]) in the right tibia versus the left (nonloaded) side in the 60 x 6 bending group. Endocortical BFR/BS in the right tibia of the 4-, 2-, and 1-bout bending groups exhibited 8-, 4-, and 4-fold increases, respectively, over the control side. Relative (right minus left) values for endocortical BFR/BS, mineralizing surface (MS/BS), and mineral apposition rate (MAR) were 65-94% greater in the 90 x 4 and 60 x 6 bending groups compared to the 360 x 1 bending group. Sham-bending tibias exhibited relative endocortical bone formation values similar to those collected from the control (0 x 0) group. The data show that 360 daily loading cycles applied at intervals of 60 x 6 or 90 x 4 represent a more osteogenic stimulus than 360 cycles applied all at once, and that mechanical loading is more osteogenic when divided into discrete loading bouts. Presumably, bone cells become increasingly "deaf" to the mechanical stimulus as loading cycles persist uninterrupted, and by allowing a rest period between loading bouts, the osteogenic effectiveness of subsequent cycles can be increased.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1359/jbmr.2000.15.8.1596 | DOI Listing |
J Sports Sci
November 2024
Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
J Appl Physiol (1985)
January 2025
Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan.
Eccentric contractions (ECC) are accompanied by the accumulation of intracellular calcium ions ([Ca]) and induce skeletal muscle damage. Suppressed muscle damage in repeated bouts of ECC is well characterized; however, whether it is mediated by altered Ca profiles remains unknown. We tested the hypothesis that repeated ECC suppresses Ca accumulation via adaptations in Ca regulation.
View Article and Find Full Text PDFFoot (Edinb)
December 2024
Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston Vic 3199, Melbourne, Australia. Electronic address:
Life (Basel)
September 2024
Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education, 00-968 Warsaw, Poland.
Respiratory muscle training (RMT) improves endurance performance, balance, and ability to repeat high-intensity exercise bouts, providing a rationale to be applied in short-track speedskating. To establish a preferable RMT method for short-track speedskating, the influence of inspiratory pressure threshold loading (IPTL) and voluntary isocapnic hyperpnoea (VIH) on cardiopulmonary indices and athletic performance was investigated. Sixteen elite short-track speedskaters completed 6 weeks of RMT based on IPTL or VIH.
View Article and Find Full Text PDFEur J Sport Sci
November 2024
Center for Sports and Physical Education, Faculty of Human Sciences, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany.
The study explores the validity of the nonlinear index alpha 1 of detrended fluctuation analysis (DFAa1) of heart rate (HR) variability for exercise prescription in prolonged constant load running bouts of different intensities. 21 trained endurance athletes (9 w and 12 m) performed a ramp test for ventilatory threshold (vVT1 and vVT2) and DFAa1-based (vDFAa1-1 at 0.75 and vDFAa1-2 at 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!