Induction and characterization of human glioma clones with different radiosensitivities.

Neoplasia

Brain Tumor Research Center of the Department of Neurological Surgery, School of Medicine, University of California, San Francisco 94143-0520, USA.

Published: June 1999

To facilitate investigation of the molecular mechanisms of tumor cell radiosensitivities, we have generated a set of clones with different radiosensitivities from a human glioma cell line U-251 MG-Ho. Forty-four colonies were isolated by subjecting parent cells to the mutagen N-methylnitrosourea and then irradiating these cells with increasing doses of x-rays. About half of the clones displayed different radiosensitivities than the parent cells. We selected one of the most sensitive clones (X3i) and one of the most resistant clones (Y6) for further study. Isoeffective doses for these two clones differed by about a factor of 1.7; the relative radiosensitivities of both clones were stable for at least 30 cell culture passages. These two clones do not differ significantly in either the induction or repair of radiation-induced DNA double-strand breaks as measured by pulsed field gel electrophoresis. Radiation-induced apoptosis measured by terminal deoxynucleotide transferase-mediated dUTP nick end labeling assay and micronucleus formation were similar in both clones. However, potentially lethal damage repair was greater in the radioresistant Y6 clone than in the radiosensitive X3i clone as determined by colony-forming efficiency assay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1508132PMC
http://dx.doi.org/10.1038/sj.neo.7900015DOI Listing

Publication Analysis

Top Keywords

clones
9
human glioma
8
clones radiosensitivities
8
parent cells
8
radiosensitivities
5
induction characterization
4
characterization human
4
glioma clones
4
radiosensitivities facilitate
4
facilitate investigation
4

Similar Publications

Background: Klebsiella pneumoniae is one of the most prevalent pathogens responsible for multiple infections in healthcare settings and the community. K. pneumoniae CG147, primarily including ST147 (the founder ST), ST273, and ST392, is one of the most globally successful MDR clone linked to various carbapenemases.

View Article and Find Full Text PDF

Identification and validation of a prognostic signature of drug resistance and mitochondrial energy metabolism-related differentially expressed genes for breast cancer.

J Transl Med

January 2025

Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.

Background: Drug resistance constitutes one of the principal causes of poor prognosis in breast cancer patients. Although cancer cells can maintain viability independently of mitochondrial energy metabolism, they remain reliant on mitochondrial functions for the synthesis of new DNA strands. This dependency underscores a potential link between mitochondrial energy metabolism and drug resistance.

View Article and Find Full Text PDF

Cloning and functional characterization of the caffeine oxidase gene CsCDH from Camellia sinensis.

Int J Biol Macromol

January 2025

Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China. Electronic address:

Theacrine, a purine alkaloid with pharmacological effects such as calming and anti-depressive activities, is biosynthesized through a key rate-limiting enzyme, caffeine oxidase. Despite its importance, the caffeine oxidase gene (CsCDH) in Camellia sinensis has not been cloned to date. We successfully isolated the full-length CsCDH cDNA, which contains a 501-bp open reading frame (ORF) encoding a 166-amino-acid protein with a calculated molecular weight of 18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!