Calculation of pulsed NMR signal in I = 3/2 quadrupolar spin system.

Solid State Nucl Magn Reson

Department of Physics, Rani Durgavati University, Jabalpur, India.

Published: July 2000

AI Article Synopsis

  • The study focuses on the rf pulse response in a I = 3/2 spin system with first-order quadrupolar splitting, utilizing a density matrix approach to derive a general expression for NMR signals from center line and satellite resonances.
  • The research derives a transformation matrix from the Hamiltonian to analyze the center line response, while satellite signals are computed using numerical values from quartic equations.
  • The paper also examines how the widths of π/2-pulses vary with initial spin populations and explores the relationship between pulse width, signal amplitude, and satellite splitting.

Article Abstract

The rf pulse response of I = 3/2 spin system experiencing first order quadrupolar splitting is studied using density matrix approach. A general expression is derived in terms of spin populations, quadrupole splitting and duration and amplitude of the rf pulse for calculating the NMR signal arising due to the centre line and satellite resonances for the situation where the impressed rf pulse excites the resonances selectively as well as non-selectively. The necessary 4 X 4 transformation matrix obtained analytically by diagonalyzing the Hamiltonian are used to get the expression for the centre line response. The satellite signals are obtained in the same way but by using the numerical values of the roots of the related quartics. The widths of the corresponding pi/2-pulses are calculated for different initial spin populations. The variations of this pulse-width and the corresponding signal amplitude as a function of satellite splitting are studied.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0926-2040(00)00077-1DOI Listing

Publication Analysis

Top Keywords

nmr signal
8
spin system
8
splitting studied
8
spin populations
8
calculation pulsed
4
pulsed nmr
4
signal 3/2
4
3/2 quadrupolar
4
spin
4
quadrupolar spin
4

Similar Publications

Reduction-oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV).

View Article and Find Full Text PDF

Cardiorespiratory signals have long been treated as "noise" in functional magnetic resonance imaging (fMRI) research, with the goal of minimizing their impact to isolate neural activity. However, there is a growing recognition that these signals, once seen as confounding variables, provide valuable insights into brain function and overall health. This shift reflects the dynamic interaction between the cardiovascular, respiratory, and neural systems, which together support brain activity.

View Article and Find Full Text PDF

Solution NMR studies of large systems are hampered by rapid signal decay. We hereby introduce ROCSY (relaxation-optimized total correlation spectroscopy), which maximizes transfer efficiency across J-coupling-connected spin networks by minimizing the amount of time magnetization spends in the transverse plane. Hard pulses are substituted into the Clean-CITY TOCSY pulse element first developed by Ernst and co-workers, allowing for longer delays in which magnetization is aligned along the z-axis.

View Article and Find Full Text PDF
Article Synopsis
  • Medical volume data is increasing significantly, leading to challenges in organizing, storing, and processing large datasets.
  • The proposed solution is an end-to-end architecture for data compression using deep learning, featuring modules for downsampling, implicit neural representation, and super-resolution.
  • Experimental results show impressive compression rates of up to 97.5% while preserving high reconstruction quality, making it efficient for managing large medical data on GPUs.
View Article and Find Full Text PDF

The population receptive field (pRF) method, which measures the region in visual space that elicits a blood-oxygen-level-dependent (BOLD) signal in a voxel in retinotopic cortex, is a powerful tool for investigating the functional organization of human visual cortex with fMRI (Dumoulin & Wandell, 2008). However, recent work has shown that pRF estimates for early retinotopic visual areas can be biased and unreliable, especially for voxels representing the fovea. Here, we show that a log-bar stimulus that is logarithmically warped along the eccentricity dimension produces more reliable estimates of pRF size and location than the traditional moving bar stimulus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!