Modulation of angiogenesis is now a recognized strategy for the prevention and treatment of pathologies categorized by their reliance on a vascular supply. The purpose of this study was to evaluate the effect of 1 alpha,25-dihydroxyvitamin D(3) [1, 25(OH)(2)D(3)], the active metabolite of vitamin D(3), on angiogenesis by using well-characterized in vitro and in vivo model systems. 1,25(OH)(2)D(3) (1 x 10(-9) to 1 x 10(-7) mol/L) significantly inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell sprouting and elongation in vitro in a dose-dependent manner and had a small, but significant, inhibitory effect on VEGF-induced endothelial cell proliferation. 1, 25(OH)(2)D(3) also inhibited the formation of networks of elongated endothelial cells within 3D collagen gels. The addition of 1, 25(OH)(2)D(3) to endothelial cell cultures containing sprouting elongated cells induced the regression of these cells, in the absence of any effect on cells present in the cobblestone monolayer. Analysis of nuclear morphology, DNA integrity, and enzymatic in situ labeling of apoptosis-induced strand breaks demonstrated that this regression was due to the induction of apoptosis specifically within the sprouting cell population. The effect of 1,25(OH)(2)D(3) on angiogenesis in vivo was investigated by using a model in which MCF-7 breast carcinoma cells, which had been induced to overexpress VEGF, were xenografted subcutaneously together with MDA-435S breast carcinoma cells into nude mice. Treatment with 1,25(OH)(2)D(3) (12.5 pmol/d for 8 weeks) produced tumors that were less well vascularized than tumors formed in mice treated with vehicle alone. These results highlight the potential use of 1,25(OH)(2)D(3) in both the prevention and regression of conditions characterized by pathological angiogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.res.87.3.214DOI Listing

Publication Analysis

Top Keywords

endothelial cell
12
vitro vivo
8
vegf-induced endothelial
8
cells induced
8
breast carcinoma
8
carcinoma cells
8
cells
6
angiogenesis
5
endothelial
5
alpha25-dihydroxyvitamin inhibits
4

Similar Publications

Ovarian cancer is a common malignant tumor in women, exhibiting a certain sensitivity to chemotherapy drugs like gemcitabine (GEM). This study, through the analysis of ovarian cancer single-cell RNA sequencing (scRNA-seq) data and transcriptome data post-GEM treatment, identifies the pivotal role of hypoxia-inducible factor 1 alpha (HIF-1α) in regulating the treatment process. The results reveal that HIF-1α modulates the expression of VEGF-B, thereby inhibiting the fibroblast growth factor 2 (FGF2)/FGFR1 signaling pathway and impacting tumor formation.

View Article and Find Full Text PDF

A novel quantitative angiogenesis assay based on visualized vascular organoid.

Angiogenesis

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.

Angiogenesis describes the sprouting of blood vessels from existing vasculatures and it plays a pivotal role in disease progress such as diabetes, age-related macular degeneration and cancer. However, the most widely used anti-angiogenic agents targeting vascular endothelial growth factor (VEGF) pathway still lacked of specificity and therapeutic efficacy. To establish a method suitable for high-throughput drug screening and faithfully recapitulate the feature of in vivo angiogenesis, we generated a PECAM1-mRuby3-secNluc; ACTA2-EGFP dual reporter human pluripotent stem cell (hPSC) line and utilizing the cell line to establish a visualized and quantifiable in vitro angiogenesis model with stem cell-derived vascular organoid.

View Article and Find Full Text PDF

Co-delivery of antioxidants and siRNA-VEGF: promising treatment for age-related macular degeneration.

Drug Deliv Transl Res

January 2025

Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.

Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss.

View Article and Find Full Text PDF

O-linked N-acetylglucosamine transferase (OGT)-catalyzed O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) is closely associated with diabetes progression. This study aims to investigate the mechanism of OGT in regulating endothelial dysfunction in gestational diabetes mellitus (GDM). Expressions of OGT, O-linked N-acetylglucosamine (O-GlcNAc), enhancer of zeste homolog 2 (EZH2), and HEK27me3 in human umbilical vein endothelial cells (HUVECs) and GDM-derived HUVECs (GDM-HUVECs) were assessed by western blot.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) identified the ATP binding cassette subfamily A member 7 (ABCA7) gene as increasing risk for Alzheimer's disease (AD). ABC proteins transport various molecules across extra and intra-cellular membranes. ABCA7 is part of the ABC1 subfamily and is expressed in brain cells including neurons, astrocytes, microglia, endothelial cells and pericytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!