QUTR (qutR-encoded transcription-repressing protein) is a multi-domain repressor protein active in the signal-transduction pathway that regulates transcription of the quinic acid utilization (qut) gene cluster in Aspergillus nidulans. In the presence of quinate, production of mRNA from the eight genes of the qut pathway is stimulated by the activator protein QUTA (qutA-encoded transcription-activating protein). Mutations in the qutR gene alter QUTR function such that the transcription of the qut gene cluster is permanently on (constitutive phenotype) or is insensitive to the presence of quinate (super-repressed phenotype). These mutant phenotypes imply that the QUTR protein plays a key role in signal recognition and transduction, and we have used deletion analysis to determine which regions of the QUTR protein are involved in these functions. We show that the QUTR protein recognizes and binds to the QUTA protein in vitro and that the N-terminal 88 amino acids of QUTR are sufficient to inactivate QUTA function in vivo. Deletion analysis and domain-swap experiments imply that the two C-terminal domains of QUTR are mainly involved in signal recognition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221241 | PMC |
J Fluoresc
January 2025
School of Chemistry & Environmental Engineering, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China.
In this work, a new fluorescent sensor for detecting Cu was developed based on the Rhodamine derivative. It displayed strong fluorescence enhancement upon the addition of Cu, and other common metal ions do not significantly affect the optical properties of the sensor. This optical signal change caused solely by Cu is due to the opening of the lactone amide spiro ring structure, resulting in fluorescence emission.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
() is a prominent pathogen responsible for intestinal infections, primarily transmitted through contaminated food and water. This underscores the critical need for precise and biocompatible technologies enabling early detection and intervention of bacterial colonization . Herein, a multifunctional nanoplatform (IR808-Au@ZIF-90-Apt) was designed, utilizing an -specific aptamer to initiate cascade responses triggered by intracellular ATP and GSH.
View Article and Find Full Text PDFAlzheimer's disease (AD), a leading cause of dementia, is associated with significant respiratory dysfunctions. Our study explores the role of astrogliosis in the brainstem retrotrapezoid nucleus (RTN), a key breathing regulatory center, and its impact on breathing control and AD pathology in mice. Using Tg-2576 AD and wild-type mice, we investigated the effect of silencing the transforming growth factor-beta receptor II (TGFβR II) in the RTN.
View Article and Find Full Text PDFData Brief
February 2025
Department of Information & Communication Technology, University of Agder (UiA), Norway.
Hindko is a language primarily spoken in Northwestern areas of Pakistan. Approximately eight million people speak the Hindko language. According to its native speakers, it is 7 largest language of Pakistan and 2 largest language of Khyber Pakhtunkhwa.
View Article and Find Full Text PDFPhotoacoustics
February 2025
Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States.
Pattern recognition analysis in brain research has improved understanding of sensory processing and led to the identification of default brain networks in neuroimaging studies. The current study uses pattern recognition analysis to extend our previous findings showing conditioned fear learning and novelty-exposure (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!