The homeobox genes Xlim-1 and goosecoid (gsc) are coexpressed in the Spemann organizer and later in the prechordal plate that acts as head organizer. Based on our previous finding that gsc is a possible target gene for Xlim-1, we studied the regulation of gsc transcription by Xlim-1 and other regulatory genes expressed at gastrula stages, by using gsc-luciferase reporter constructs injected into animal explants. A 492-bp upstream region of the gsc promoter responds to Xlim-1/3m, an activated form of Xlim-1, and to a combination of wild-type Xlim-1 and Ldb1, a LIM domain binding protein, supporting the view that gsc is a direct target of Xlim-1. Footprint and electrophoretic mobility shift assays with GST-homeodomain fusion proteins and embryo extracts overexpressing FLAG-tagged full-length proteins showed that the Xlim-1 homeodomain or Xlim-1/Ldb1 complex recognize several TAATXY core elements in the 492-bp upstream region, where XY is TA, TG, CA, or GG. Some of these elements are also bound by the ventral factor PV.1, whereas a TAATCT element did not bind Xlim-1 or PV.1 but did bind the anterior factors Otx2 and Gsc. These proteins modulate the activity of the gsc reporter in animal caps: Otx2 activates the reporter synergistically with Xlim-1 plus Ldb1, whereas Gsc and PV.1 strongly repress reporter activity. We show further, using animal cap assays, that the endogenous gsc gene was synergistically activated by Xlim-1, Ldb1, and Otx2 and that the endogenous otx2 gene was activated by Xlim-1/3m, and this activation was suppressed by the posterior factor Xbra. Based on these data, we propose a model for gene interactions in the specification of dorsoventral and anteroposterior differences in the mesoderm during gastrulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/dbio.2000.9778 | DOI Listing |
Development
September 2003
Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.
The Xenopus LIM homeodomain (LIM-HD) protein, Xlim-1, is expressed in the Spemann organizer and cooperates with its positive regulator, Ldb1, to activate organizer gene expression. While this activation is presumably mediated through Xlim-1/Ldb1 tetramer formation, the mechanisms regulating proper Xlim-1/Ldb1 stoichiometry remains largely unknown. We isolated the Xenopus ortholog (XRnf12) of the RING finger protein Rnf12/RLIM and explored its functional interactions with Xlim-1 and Ldb1.
View Article and Find Full Text PDFDevelopment
November 2002
Department of Biological Sciences, Graduate School of Science, University of Tokyo, and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
The Spemann organizer plays a central role in neural induction, patterning of the neuroectoderm and mesoderm, and morphogenetic movements during early embryogenesis. By seeking genes whose expression is activated by the organizer-specific LIM homeobox gene Xlim-1 in Xenopus animal caps, we isolated the receptor tyrosine kinase Xror2. Xror2 is expressed initially in the dorsal marginal zone, then in the notochord and the neuroectoderm posterior to the midbrain-hindbrain boundary.
View Article and Find Full Text PDFEMBO J
July 2001
Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
The protein kinase PKR (dsRNA-dependent protein kinase) phosphorylates the eukaryotic translation initiation factor eIF2alpha to downregulate protein synthesis in virus-infected cells. Two double-stranded RNA binding domains (dsRBDs) in the N-terminal half of PKR are thought to bind the activator double-stranded RNA, mediate dimerization of the protein and target PKR to the ribosome. To investigate further the importance of dimerization for PKR activity, fusion proteins were generated linking the PKR kinase domain to heterologous dimerization domains.
View Article and Find Full Text PDFDev Biol
January 2001
Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
The Xenopus LIM homeodomain protein Xlim-1 is specifically expressed in the Spemann organizer region and assumed to play a role in the establishment of the body axis as a transcriptional activator. To further elucidate the mechanism underlying the regulation of its transcriptional activity, we focused on the region C-terminal to the homeodomain of Xlim-1 (CT239-403) and divided it into five regions, CCR1-5 (C-terminal conserved regions), based on similarity between Xlim-1 and its paralog, Xlim-5. The role of Xlim-1 CT239-403 in the Spemann organizer was analyzed by assaying the axis-forming ability of a series of CCR-mutated constructs in Xenopus embryos.
View Article and Find Full Text PDFDev Biol
August 2000
Laboratory of Molecular Embryology, Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan.
The homeobox genes Xlim-1 and goosecoid (gsc) are coexpressed in the Spemann organizer and later in the prechordal plate that acts as head organizer. Based on our previous finding that gsc is a possible target gene for Xlim-1, we studied the regulation of gsc transcription by Xlim-1 and other regulatory genes expressed at gastrula stages, by using gsc-luciferase reporter constructs injected into animal explants. A 492-bp upstream region of the gsc promoter responds to Xlim-1/3m, an activated form of Xlim-1, and to a combination of wild-type Xlim-1 and Ldb1, a LIM domain binding protein, supporting the view that gsc is a direct target of Xlim-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!