The energy-dependent transport and accumulation of K+ in respiring mitochondria has been found to inhibit the S-adenosylmethionine: delta-24-sterol methyltransferase enzyme of Saccharomyces cerevisiae. Potassium cation translocation is discussed as a possible regulatory mechanism over the biosynthesis of ergosterol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC246098PMC
http://dx.doi.org/10.1128/jb.122.2.606-609.1975DOI Listing

Publication Analysis

Top Keywords

potassium translocation
4
translocation yeast
4
yeast mitochondria
4
mitochondria relationship
4
relationship ergostrol
4
ergostrol biosynthesis
4
biosynthesis energy-dependent
4
energy-dependent transport
4
transport accumulation
4
accumulation respiring
4

Similar Publications

Direct visualization of electric-field-stimulated ion conduction in a potassium channel.

Cell

January 2025

Department of Molecular and Cell Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. Electronic address:

Understanding protein function would be facilitated by direct, real-time observation of chemical kinetics in the atomic structure. The selectivity filter (SF) of the K channel provides an ideal model, catalyzing the dehydration and transport of K ions across the cell membrane through a narrow pore. We used a "pump-probe" method called electric-field-stimulated time-resolved X-ray crystallography (EFX) to initiate and observe K conduction in the NaK2K channel in both directions on the timescale of the transport process.

View Article and Find Full Text PDF

Although peptide vaccines offer a novel venue for cancer immunotherapy, clinical success has been rather limited. Cell-penetrating peptides, due to their ability to translocate through the cell membrane, could be conjugated to the peptide vaccine to2 enhance therapeutic efficiency. The S4 transduction domain of the shaker-potassium channel was conjugated to mammaglobin-A (MamA) immunodominant epitope (MamA2.

View Article and Find Full Text PDF

Background: The monocarboxylate transporter 1 (MCT1) plays a crucial role in regulating lactate and pyruvate transport across cell membranes, which is essential for energy metabolism during exercise. The A1470T (rs1049434) polymorphism has been suggested to influence lactate transport, with the T (major) allele associated with greater transport efficiency. This study aimed to investigate the effect of the polymorphism on lactate and potassium (K) concentrations in response to resistance exercise (RE) following caffeine (CAF) ingestion.

View Article and Find Full Text PDF

Molecular Basis of Na, K-ATPase Regulation of Diseases: Hormone and FXYD2 Interactions.

Int J Mol Sci

December 2024

Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil.

The Na, K-ATPase generates an asymmetric ion gradient that supports multiple cellular functions, including the control of cellular volume, neuronal excitability, secondary ionic transport, and the movement of molecules like amino acids and glucose. The intracellular and extracellular levels of Na and K ions are the classical local regulators of the enzyme's activity. Additionally, the regulation of Na, K-ATPase is a complex process that occurs at multiple levels, encompassing its total cellular content, subcellular distribution, and intrinsic activity.

View Article and Find Full Text PDF

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!