Secondary dialkylammonium (R2NH2+) ions are bound readily by dibenzo[24]crown-8 (DB24C8) to form threaded complexes, namely [2]pseudo-rotaxanes. The effect of replacing one or both of the catechol rings in DB24C8 with resorcinol rings upon the crown ether's ability to bind R2NH2+ ions has now been investigated. When only one aromatic ring is changed from catechol to resorcinol, a crown ether with a [25]crown-8 constitution is created-namely benzometaphenylene[25]crown-8 (BMP25C8). A [2]pseudorotaxane is formed in the solid state when BMP25C8 is co-crystallized with dibenzylammonium hexafluorophosphate, as evidenced by its X-ray crystal structure. Furthermore, this crown ether has been shown to bind R2NH2+ ions in solution, an observation which has been exploited in the synthesis of the first BMP25C8-containing [2]rotaxane. The methodology employed to generate this [2]rotaxane--the reaction of an amine with an isocyanate to form a urea--was tested initially on a system incorporating DB24C8 and was shown to work efficiently. Both [2]rotaxanes have been fully characterized by 1H and 13C NMR spectroscopies, FAB mass spectrometry and X-ray crystallography. Interestingly, the unsymmetrical nature of the dumbbell-shaped component in each of the two [2]rotaxanes renders each face of the encircling macrocyclic polyether diastereotopic, a feature that is apparent upon inspection of their 1H NMR spectra. The resonances associated with the diastereotopic protons on each face of the macrorings are well enough resolved to enable the faces of the crown ethers to be readily identified with respect to their protons by 1H NMR spectroscopy. Unambiguous assignments can be made as a result of the fact that the protons on each face of the macrocyclic polyether experience a unique set of through-space interactions, as evidenced by T-ROESY experiments. Additionally, the two-dimensional NMR analyses are in agreement with the X-ray crystallographic studies performed on these [2]rotaxanes, indicating that the crown ethers are located intimately around the NH2+ centers as expected. Replacement of both catechol rings in the DB24C8 constitution with resorcinol rings results in a crown ether with a [26]crown-8 constitution--namely bismetaphenylene[26]crown-8 (BMP26CS). All the evidence to date points to the fact that this further change in constitution results in a crown ether that does not bind R2NH2+ ions in either the solution or solid states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1521-3765(20000616)6:12<2274::aid-chem2274>3.0.co;2-2 | DOI Listing |
Dalton Trans
May 2021
Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
The synthesis and characterization of the adducts of n-alkyl amine and palladium n-alkyl carboxylate, [Pd(R2NH2)2(R1COO)2] (R1 = 1, 7, and 11; R2 = 8, 12, and 16), as precursors for the synthesis of palladium nanoparticles (PdNPs) was carried out via differential scanning calorimetry, FT-IR, Raman and UV-Vis spectroscopy, NMR spectroscopy (1H, 13C pulsed field gradient spin-echo (PGSE), and 13C CP-MAS), and powder X-ray diffraction. Pd n-alkyl carboxylates were obtained by a ligand exchange reaction from palladium acetate and the appropriate aliphatic carboxylic acid. It is proposed that carboxyl moieties in the presence of amine ligands are bound to palladium ions via monodentate bonding as opposed to bridging bidentate coordination of pure palladium carboxylate which exists in the form of polymer aggregates.
View Article and Find Full Text PDFJ Phys Chem B
May 2015
†Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan.
Various organic anions (sulfonates (RSO3(-)), carboxylates (RCO2(-)), and phenolates (RO(-))) and ammonium cations (RNH3(+), R2NH2(+), and R3NH(+)) were distributed in the nitrobenzene (NB)-water system by using Crystal Violet and dipicrylaminate, respectively. The number of water molecules (n) being coextracted into NB with an ion was then determined by the Karl Fischer method. The n values determined and those reported previously showed the variation from 0.
View Article and Find Full Text PDFOrg Biomol Chem
May 2011
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.
We report the template-directed synthesis of a well-defined, kinetically stable [5]molecular necklace with dialkylammonium ion (R(2)NH(2)(+)) as recognition site and DB24C8 as macrocycle. A thread containing four dialkylammonium ions with olefin at both ends was first synthesized and then subjected to threading with an excess amount of DB24C8 to form pseudo[5]rotaxane, which in situ undergoes ring closing metathesis at the termini with second generation Grubbs catalyst to yield the desired [5]molecular necklace. The successful synthesis of [5]molecular necklace is mainly attributed to the self-assembly and dynamic covalent chemistry which allows the formation of thermodynamically most stable product.
View Article and Find Full Text PDFChemistry
August 2005
California NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, 90095-1569, USA.
The template-directed construction of crown-ether-like macrocycles around secondary dialkylammonium ions (R2NH2+) has been utilized for the expedient (one-pot) and high-yielding synthesis of a diverse range of mechanically interlocked molecules. The clipping together of appropriately designed dialdehyde and diamine compounds around R2NH2+-containing dumbbell-shaped components proceeds through the formation, under thermodynamic control, of imine bonds. The reversible nature of this particular reaction confers the benefits of "error-checking" and "proof-reading", which one usually associates with supramolecular chemistry and strict self-assembly processes, upon these wholly molecular systems.
View Article and Find Full Text PDFChemistry
June 2000
Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA.
Secondary dialkylammonium (R2NH2+) ions are bound readily by dibenzo[24]crown-8 (DB24C8) to form threaded complexes, namely [2]pseudo-rotaxanes. The effect of replacing one or both of the catechol rings in DB24C8 with resorcinol rings upon the crown ether's ability to bind R2NH2+ ions has now been investigated. When only one aromatic ring is changed from catechol to resorcinol, a crown ether with a [25]crown-8 constitution is created-namely benzometaphenylene[25]crown-8 (BMP25C8).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!