A thermophilic apoglucose dehydrogenase as nonconsuming glucose sensor.

Biochem Biophys Res Commun

Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, University of Maryland at Baltimore, 725 West Lombard Street, Baltimore, Maryland, 21201, USA. dafne.ibpe.na.cnr.it

Published: August 2000

Blood glucose is a clinically important analytes for diabetic health care. In this preliminary report we describe a protein biosensor for d-glucose based on a thermostable glucose dehydrogenase. The glucose dehydrogenase was noncovalently labeled with 8-anilino-1-naphthalene sulfonic acid (ANS). The ANS-labeled enzyme displayed an approximate 25% decrease in emission intensity upon binding glucose. This decrease can be used to measure the glucose concentration. Our results suggest that enzymes which use glucose as their substrate can be used as reversible and nonconsuming glucose sensors in the absence of required cofactors. Moreover, the possibility of using inactive apoenzymes for a reversible sensor greatly expands the range of proteins which can be used as sensors, not only for glucose, but for a wide variety of biochemically relevant analytes.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.2000.3172DOI Listing

Publication Analysis

Top Keywords

glucose
9
nonconsuming glucose
8
glucose dehydrogenase
8
thermophilic apoglucose
4
apoglucose dehydrogenase
4
dehydrogenase nonconsuming
4
glucose sensor
4
sensor blood
4
blood glucose
4
glucose clinically
4

Similar Publications

Objective: Patients with uncontrolled gout have few treatment options. Pegloticase lowers serum urate (SU) levels, but antidrug antibodies limit SU-lowering response and increase infusion reaction (IR) risk. Methotrexate (MTX) cotherapy increases pegloticase response rates and lowers IR risk in pegloticase-naïve patients.

View Article and Find Full Text PDF

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

Minimising harms of tight glycaemic control in older patients with type 2 diabetes.

Afr J Prim Health Care Fam Med

December 2024

Department of Anaesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver.

In older adults with type 2 diabetes (T2DM), tight glycaemic control (HbA1c 7%) can result in more harm than benefit, especially when using insulin or sulfonylureas. Older adults are at higher risk for adverse drug events, especially hypoglycaemia, which may cause falls, confusion and hospitalisations. This Therapeutic Letter evaluates the risks of tight glycaemic control in older adults with T2DM, focusing on deprescribing diabetes medications in those over 65, especially those with multimorbidity and polypharmacy.

View Article and Find Full Text PDF

Background: Triglyceride glucose (TyG) index has been proposed as a credible and simple surrogate indicator for insulin resistance. The primary aim of this study was to novelly examine the associations between dietary patterns reflecting variations in circulating TyG index and the risk of type 2 diabetes mellitus (T2DM).

Methods: This study included 120,988 participants from the UK Biobank, all of whom completed multiple 24-h dietary assessments.

View Article and Find Full Text PDF

Background: Branched-chain amino acids (BCAAs) are widely used as sports nutrition supplements. However, their impact on the rate of force development (RFD), an indicator of explosive muscle strength, has not yet been validated. This study aimed to assess the impact of BCAA supplementation on the RFD in college basketball players during simulated games.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!