S100 proteins are small dimeric members of the EF-hand superfamily of Ca(2+) binding proteins thought to participate in mediating intracellular Ca(2+) signals by binding to and thereby regulating target proteins in a Ca(2+)-dependent manner. As dimer formation is crucial to S100 function, we applied a yeast two-hybrid approach in analyzing in vivo molecular aspects of S100 dimerization. We chose S100P, a member of the S100 family highly expressed in placenta, for detailed analysis and showed that S100P monomers strongly interact with one another but not with other S100 polypeptides, indicating that homodimer formation is obligatory for S100P. Analysis of the interaction of site-specific S100P mutants with the wild-type polypeptide or with other S100P mutant chains identifies conserved hydrophobic amino acid residues involved in mediating dimerization in vivo. Of these residues, F-15 is crucially important as a mutation to alanine abolishes dimerization even when the F15A S100P mutant polypeptide is allowed to interact with a wild-type chain. On the other hand, I-11, I-12, or F-89 need to be replaced by a less hydrophopic residue in both subunits for there to be a similar extent of interfere with dimerization. This proves that hydrophobic residues implicated through structural studies in S100 dimerization are involved in the dimer interaction in vivo and argues for a hierarchy of hydrophobic contacts stabilizing the dimer and thereby regulating S100 function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi000257+ | DOI Listing |
IUCrJ
March 2025
Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland.
Quantum crystallography methods have been employed to investigate complex formation between nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase (COX) enzymes, with particular focus on the COX-1 and COX-2 isoforms. This study analyzed the electrostatic interaction energies of selected NSAIDs (flurbiprofen, ibuprofen, meloxicam and celecoxib) with the active sites of COX-1 and COX-2, revealing significant differences in binding profiles. Flurbiprofen exhibited the strongest interactions with both COX-1 and COX-2, indicating its potent binding affinity.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom.
The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
Introduction: This study investigated the tryptic hydrolysis of β-lactoglobulin (BLG) for 30, 60, 90, and 120 min at 1/200 E/S (enzyme/substrate ratio, w/w) to prepare potentially anticarcinogenic peptides.
Methods: The properties of hydrolysates were characterized, including degree of hydrolysis, free amino acids, SDS-PAGE, FTIR, and antioxidant activity employing DPPH-assay, β-carotene/linoleic acid, and FRAP assay.
Results: BLG tryptic hydrolysate produced after 60 min hydrolysis recorded the highest antioxidant activity, and LCMS analysis revealed 162 peptides of molecular masses ranging from 800 to 5671Da, most of them are of hydrophobic nature.
J Org Chem
January 2025
Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States.
This paper reports highly active analogues of clovibactin in which the rare, noncanonical amino acid d-hydroxyasparagine is replaced with the commercially available amino acid d-threonine. Sequential mutation of leucines 2, 7, and 8 to the more hydrophobic homologue cyclohexylalanine dramatically increases the antibiotic activity of d-Thr-clovibactin. The resulting analogues (d-Cha,d-Thr-clovibactin, Cha,d-Thr-clovibactin, and Cha,d-Thr-clovibactin) are readily prepared by standard peptide synthesis techniques and exhibit excellent activity (≤1 μg/mL) against the Gram-positive, drug-resistant pathogens MRSA and VRE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!