DNA is flexible and easily subjected to bending and wrapping via DNA/protein interaction. DNA supercoiling is known to play an important role in a variety of cellular events, such as transcription, replication, and recombination. It is, however, not well understood how the superhelical strain is efficiently redistributed during these reactions. Here we demonstrate a novel property of an initiator protein in DNA relaxation by utilizing a one-molecule-imaging technique, atomic force microscopy, combined with biochemical procedures. A replication initiator protein, RepE54 of bacterial mini-F plasmid (2.5 kb), binds to the specific sequences (iterons) within the replication region (ori2). When RepE54 binds to the iterons of the negatively supercoiled mini-F plasmid, it induces a dynamic structural transition of the plasmid to a relaxed state. This initiator-induced relaxation is mediated neither by the introduction of a DNA strand break nor by a local melting of the DNA double strand. Furthermore, RepE54 is not wrapped by DNA repeatedly. These data indicate that a local strain imposed by initiator binding can induce a drastic shift of the DNA conformation from a supercoiled to a relaxed state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0003588 | DOI Listing |
Cytotherapy
November 2024
Institute of Immunology and Immunotherapy, College of Medicine and Health, University of Birmingham, Birmingham, UK. Electronic address:
Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.
View Article and Find Full Text PDFSci Rep
January 2025
College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.
View Article and Find Full Text PDFEur J Appl Physiol
January 2025
Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus Liebig University Giessen, Kugelberg 62, 35394, Giessen, Germany.
Purpose: This study investigated elite German athletes to (1) assess their serum 25(OH)D levels and the prevalence of insufficiency, (2) identify key factors influencing serum 25(OH)D levels, and (3) analyze the association between serum 25(OH)D levels and handgrip strength.
Methods: In this cross-sectional study, a total of 474 athletes (231 female), aged 13-39 years (mean 19.3 years), from ten Olympic disciplines were included.
Sci Rep
January 2025
Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
Malaria has been a leading cause of death in human populations for centuries and remains a major public health challenge in African countries, especially affecting children. Among the five Plasmodium species infecting humans, Plasmodium falciparum is the most lethal. Ancient DNA research has provided key insights into the origins, evolution, and virulence of pathogens that affect humans.
View Article and Find Full Text PDFSci Rep
January 2025
NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!