The routine use of nitrous oxide as a component of the carrier gas has been unanimously called into question in recent surveys, in fact, its use is now recommended in indicated cases only. Whereas a lot of contraindications are listed in the surveys, precise definitions of justified indications are not given. In clinical routine practice, there are absolutely no problems in carrying out inhalational anaesthesia without nitrous oxide. The missing analgetic effect can be compensated for by moderately increasing the additively used amount of opioids, while the missing hypnotic effect can be achieved by raising the expired concentration of the inhalational anaesthetic by not more than 0.2-0.25 x MAC. Thus, when isoflurane is used, an expired concentration of 1.2 vol% is desired, in the case of sevoflurane of 2.2 vol% and with desflurane of 5.0 vol%. In addition, doing without nitrous oxide facilitates the performance of low flow anaesthetic techniques considerably. Since the patient only inhales oxygen and the volatile anaesthetic, the total gas uptake is reduced significantly. Washing out nitrogen is no longer necessary. This means that the initial phase of low flow anaesthesia, during which high fresh gas flows have to be used, can be kept short. Its duration is now determined by the wash-in of the volatile anaesthetic. Since there is no uptake of nitrous oxide, a considerably greater volume of gas is circulating within the breathing system, minimizing the possibility of accidental gas volume deficiency. Thus, if anaesthesia machines with highly gas-tight breathing systems are used, even the performance of non-quantitative closed system anaesthesia becomes possible in routine clinical practice. The carrier gas flow can be reduced to just that amount of oxygen which is really taken up by the patient. This oxygen volume can be roughly calculated by applying the Brody's formula. Using fresh gas flows as low as 0.25 l/min, however, will result in a significant decrease of the output of conventional vaporizers outside the circuit. Thus, it becomes nearly impossible to maintain an expired isoflurane concentration of 1.2 vol%. With respect to their pharmcokinetic properties, the newer low soluble volatile agents sevoflurane and desflurane are better suited for use with flows corresponding to the basal oxygen uptake. Our own clinical experience, gained in the last six months from a trial involving over 1,800 patients, shows that the increase in opioid consumption resulted in additional costs of about 0.25-0.50 DM per patient. The increased concentration of inhalational agents brought additional costs of 3.00 to 5.00 DM for a two-hour anaesthesia. On the other hand, doing without nitrous oxide saved 2.61 DM per one-hour anaesthesia, whereby our consumption of nitrous oxide is extremely low as minimal flow anaesthesia is performed consistently. Furthermore, these calculations disregard the cost of the technical maintenance fo the central gas piping system and of the regular measurement of workplace contamination with nitrous oxide by a certified institute, which in Germany, ad least, is obligatory. The additional costs of nitrous oxide-free inhalational anaesthesia seem to be balanced by the savings. Given the numerous justified arguments against the routine use of nitrous oxide, the lack of precisely-defined indications and the clinical experience showing that doing without nitrous oxide is uncomplicated, self-financing and ecologically beneficial, the use of nitrous oxide should be given up completely.
Download full-text PDF |
Source |
---|
Neuropsychopharmacology
January 2025
Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, UK.
There is an ongoing need to identify novel pharmacological agents for the effective treatment of depression. One emerging candidate, which has demonstrated rapid-acting antidepressant effects in treatment-resistant groups, is nitrous oxide (NO)-a gas commonly used for sedation and pain management in clinical settings and with a range of pharmacological effects, including antagonism of NMDA glutamate receptors. A growing body of evidence suggests that subanaesthetic doses of NO (50%) can interfere with the reconsolidation of maladaptive memories in healthy participants and across a range of disorders.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China. Electronic address:
Grassland represents one of the most expansive terrestrial ecosystems, exerting a profound influence on atmospheric greenhouse gas (GHG) levels within the broader context of global change. Both climate and land use changes play important roles in modulating grassland GHG emissions by directly or indirectly altering soil physical and chemical properties, especially soil temperature and inorganic nitrogen content. The optimal grassland management practices need to simultaneously meet the requirements of reducing GHG emissions, maintaining biological biodiversity, and ensuring productivity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853.
Ammonia oxidizing archaea (AOA) are among the most abundant microorganisms on earth and are known to be a major source of nitrous oxide (NO) emissions, although biochemical origins of this NO remain unknown. Enzymological details of AOA nitrogen metabolism are broadly unavailable. We report the recombinant expression, purification, and characterization of a multicopper oxidase, Nmar_1354, from the AOA .
View Article and Find Full Text PDFWater Res X
December 2024
School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
The biological nitrogen removal process in wastewater treatment inevitably produces nitrous oxide (NO), a potent greenhouse gas. Coarse bubble mixing is widely employed in wastewater treatment processes to mix anoxic tanks; however, its impacts on NO emissions are rarely reported. This study investigates the effects of coarse bubble mixing on NO emissions in a pilot-scale mainstream nitrite shunt reactor over a 50-day steady-state period.
View Article and Find Full Text PDFNew Phytol
January 2025
Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
Recent studies have shown that stem fluxes, although highly variable among trees, can alter the strength of the methane (CH) sink or nitrous oxide (NO) source in some forests, but the patterns and magnitudes of these fluxes remain unclear. This study investigated the drivers of subdaily and seasonal variations in stem and soil CH, NO and carbon dioxide (CO) fluxes. CH, NO and CO fluxes were measured continuously for 19 months in individual stems of two tree species, Eperua falcata (Aubl.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!