A Drosophila analogue of v-Cbl is a dominant-negative oncoprotein in vivo.

Oncogene

Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Melbourne, VIC, Australia.

Published: July 2000

Cells rely on the ability to receive and interpret external signals to regulate growth, differentiation, and death. Positive transduction of these signals to the cytoplasm and nucleus has been extensively characterized, and genetic studies in Drosophila have made major contributions to the understanding of these pathways. Less well understood, but equally important, are the mechanisms underlying signal down-regulation. Here we report biochemical and genetic characterization of the Drosophila homologue of c-Cbl, a negative regulator of signal transduction with ubiquitin-protein ligase activity. A new isoform of D-Cbl, D-CblL, has been identified that contains SH3-binding and UBA domains previously reported to be absent. Genetic analysis demonstrates that Dv-cbl, analogous to the mammalian v-cbl oncogene, is a dominant negative mutation able to enhance signalling from the Drosophila Egfr and cooperate with activating mutations in the sevenless pathway to produce melanotic tumours. In addition, our data show genetic and biochemical links between D-Cbl and proteins involved in endocytosis and ubiquitination, suggesting that v-Cbl may exert its oncogenic effect by enhancing receptor signalling as a consequence of suppressing receptor endocytosis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1203624DOI Listing

Publication Analysis

Top Keywords

drosophila
4
drosophila analogue
4
analogue v-cbl
4
v-cbl dominant-negative
4
dominant-negative oncoprotein
4
oncoprotein vivo
4
vivo cells
4
cells rely
4
rely ability
4
ability receive
4

Similar Publications

Electric-field induced sleep promotion and lifespan extension in Gaucher's disease model flies.

Biochem Biophys Rep

March 2025

Institute for Chronobiology, Foundation for Advancement of International Science (FAIS), 3-24-16 Kasuga, Tsukuba, Ibaraki, 305-0812, Japan.

Gaucher's disease (GD) is a genetic disease characterized by a mutation in the metabolic enzyme glucocerebrosidase (GBA1), leading to the accumulation of glucosylceramide in tissues. We previously discovered that a -inserted mutation in the gene of fruit flies, , mimics human neuronopathic GD (nGD) characteristics, providing a promising model for studying the molecular mechanisms of the disease. We also reported that extremely low-frequency electric fields (ELF-EFs) promote sleep and extend the lifespan of wild-type flies.

View Article and Find Full Text PDF

In modern agriculture, control of insect pests is achieved by using insecticides that can also have lethal and sublethal effects on beneficial non-target organisms. Here, we investigate acute toxicity and sublethal effects of four insecticides on the males' sex pheromone response and the female host finding ability of the Drosophila parasitoid Leptopilina heterotoma. The nicotinic acetylcholine receptor antagonists acetamiprid, flupyradifurone and sulfoxaflor, as well as the acetylcholinesterase inhibitor dimethoate were applied topically as acetone solutions.

View Article and Find Full Text PDF

The developmental and genetic basis of male genitalia evolution in Drosophilids.

Curr Opin Insect Sci

January 2025

Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 3109601, Israel. Electronic address:

Reproductive organs are among the most variable and rapidly evolving structures in the animal kingdom, probably due to sexual selection. In insects, the diverse morphology of male genitalia is often one of the few visible characteristics that can reliably distinguish closely related species, making it crucial for taxonomic classification. Consistent with this, males of the model organism Drosophila melanogaster and its closely related species display remarkable variations in genital morphology.

View Article and Find Full Text PDF

fos genes in mainly invertebrate model systems: A review of commonalities and some diversities.

Cells Dev

January 2025

Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Querétaro, Mexico. Electronic address:

fos genes, transcription factors with a common basic region and leucine zipper domains binding to a consensus DNA sequence (TGA{}TCA), are evolutionarily conserved in eukaryotes. Homologs can be found in many different species from yeast to vertebrates. In yeast, the homologous GCN4 gene is required to mediate "emergency" situations like nutrient deprivation and the unfolded protein response.

View Article and Find Full Text PDF

Parasitoid wasp venoms degrade imaginal discs for successful parasitism.

Sci Adv

January 2025

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan.

Article Synopsis
  • Parasitoid wasps, a highly diverse group of animals, use their venoms to manipulate the physiology of host larvae for their benefit.
  • Researchers discovered that a specific wasp can cause the death and dysfunction of its host's tissue precursors, a process called imaginal disc degradation (IDD).
  • The study identified two venom proteins crucial for IDD, showing how the wasp's venom strategically ensures the host grows but inhibits its transformation into adulthood.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!