Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The signal transducer and activator of transcription (STAT) proteins have been implicated in cytokine-regulated proliferation, differentiation and cell survival. Granulocyte colony-stimulating factor (G-CSF), a regulator of granulocytic differentiation, induces a robust and sustained activation of STAT3. Here, we show that introduction of dominant negative (DN) forms of STAT3 interferes with G-CSF-induced differentiation and survival in murine 32D cells. G-CSF induces expression of the cyclin-dependent kinase (cdk) inhibitor p27(KiP1) (but not p21(CiP1)), which is completely blocked by DN-STAT3. The ability of tyrosine-to-phenylalanine substitution mutants of the G-CSF receptor to activate STAT3 strongly correlated with their capacity to induce p27 expression and their ability to mediate differentiation and survival, suggesting a causal relationship between STAT3 activation, p27 expression and the observed cellular responses. We identified a putative STAT binding site in the promoter region of p27 that showed both STAT3 binding in electrophoretic mobility shift assays and functional activity in luciferase reporter assays. Finally, we studied G-CSF-induced responses in primary bone marrow and spleen cells of p27-deficient mice. Compared with wild-type, myeloid progenitors from p27-deficient mice showed significantly increased proliferation and reduced differentiation in response to G-CSF. These findings indicate that STAT3 controls myeloid differentiation, at least partly, via upregulation of p27(Kip1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1203627 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!