Properties of a virus-like artificial gene delivery vehicle, synthesised from recombinant major coat protein of mouse polyoma virus, have been explored. The protein, VP1, self assembles into protein spheres, or 'pseudocapsids, which can bind and transfer DNA into cells in vitro and in vivo. Here, the ability of pseudocapsids to carry DNA into a complex cell system (ex vivo organ cultures of rabbit cornea) or whole animals (mice) has been assessed. Evidence from histochemical and PCR experiments indicate that pseudocapsids stimulate uptake and stable maintenance of marker DNA in nondividing corneal cells as efficiently as a recombinant adenovirus. In athymic and immunocompetent mice, gene transmission occurs with no apparent adverse effects on the animals. In the presence of pseudocapsids, the marker gene was transferred to a range of organs, including the brains of animals, following peripheral or intranasal administration. In immunocompetent mice, significant long-term transcriptional expression (at least 22 weeks) was observed with pseudocapsids, a period significantly longer than observed with DNA alone (several weeks only), again with no obvious adverse effects. This study demonstrates that pseudocapsids from the murine virus, polyoma, constitute a novel transfer agent for long-term gene therapeutic applications in tissues or whole animals.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.gt.3301219DOI Listing

Publication Analysis

Top Keywords

polyoma virus
8
immunocompetent mice
8
adverse effects
8
pseudocapsids
6
gene
5
sustained vivo
4
vivo vivo
4
vivo transfer
4
transfer reporter
4
reporter gene
4

Similar Publications

Herpesviruses mimic zygotic genome activation to promote viral replication.

Nat Commun

January 2025

Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg, Freiburg, Germany.

Zygotic genome activation (ZGA) is crucial for maternal to zygotic transition at the 2-8-cell stage in order to overcome silencing of genes and enable transcription from the zygotic genome. In humans, ZGA is induced by DUX4, a pioneer factor that drives expression of downstream germline-specific genes and retroelements. Here we show that herpesviruses from all subfamilies, papillomaviruses and Merkel cell polyomavirus actively induce DUX4 expression to promote viral transcription and replication.

View Article and Find Full Text PDF

Background: Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous malignancy with neuroendocrine differentiation. Several molecular pathways have been implicated in MCC development and multiple cell-of-origin candidates have been proposed, including neural crest cells, which express acetylcholine receptors (AChRs). The role of nicotinic acetylcholine receptors (nAChRs) in MCC has not been explored.

View Article and Find Full Text PDF

Miscarriage represents a prevalent yet insufficiently studied adverse pregnancy outcome. The definitive causal links between various pathogens and miscarriage remain to be established. To investigate the causal connections between pathogen infections and miscarriage, we utilized a two-sample bidirectional Mendelian randomization (MR) analysis.

View Article and Find Full Text PDF

Chronically persistent viruses are integral components of the organismal ecosystem in humans and animals . Many of these viruses replicate and accumulate within the cell nucleus . The nuclear location allows viruses to evade cytoplasmic host viral sensors and promotes viral replication .

View Article and Find Full Text PDF

BK polyomavirus (BKPyV) is recognised as a significant viral complication of kidney transplantation. Prompt immunosuppression reduction reduces early graft failure rates due to BK polyomavirus-associated nephropathy (BKPyVAN), however modulation of immunosuppression can lead to acute rejection. Medium-to-long term graft outcomes are negatively impacted by BKPyVAN, likely due to a combination of virus-induced graft damage and host immune responses against graft alloantigens potentiated by immunosuppression reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!