c-myc nullizygous fibroblasts (KO cells) were used to compare the abilities of c-myc, N-myc and L-myc oncoproteins to accelerate growth, promote apoptosis, revert morphology, and regulate the expression of previously described c-myc target genes. All three myc oncoproteins were expressed following retroviral transduction of KO cells. The proteins all enhanced the growth rate of KO cells and significantly shortened the cell cycle transition time. They also accelerated apoptosis following serum deprivation, reverted the abnormal KO cell morphology, and modulated the expression of previously described c-myc target genes. In most cases, L-myc was equivalent to c-myc and N-myc in restoring all of the c-myc-dependent activities. These findings contrast with the previously reported weak transforming and transactivating properties of L-myc. Myc oncoproteins may thus impart both highly similar as well as dissimilar signals to the cells in which they are expressed.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cdd.4400701DOI Listing

Publication Analysis

Top Keywords

c-myc nullizygous
8
nullizygous fibroblasts
8
c-myc n-myc
8
expression described
8
described c-myc
8
c-myc target
8
target genes
8
myc oncoproteins
8
c-myc
6
promotion growth
4

Similar Publications

Homozygosity for the Egfr(tm1Mag) null allele in mice leads to genetic background dependent placental abnormalities and embryonic lethality. Molecular mechanisms or genetic modifiers that differentiate strains with surviving versus non-surviving Egfr nullizygous embryos have yet to be identified. Egfr transcripts in wildtype placenta were quantified by ribonuclease protection assay (RPA) and the lowest level of Egfr mRNA expression was found to coincide with Egfr(tm1Mag) homozygous lethality.

View Article and Find Full Text PDF

The small GTPase RhoB suppresses cancer in part by limiting cell proliferation. However, the mechanisms it uses to achieve this are poorly understood. Recent studies link RhoB to trafficking of Akt, which through its regulation of glycogen synthase kinase-3 (GSK-3) has an important role in controlling the stability of the c-Myc oncoprotein.

View Article and Find Full Text PDF

C-MYC, a transforming oncogene that is frequently overexpressed in many human cancers, regulates a variety of normal functions including cell cycle progression, apoptosis, and maintenance of cell size, morphology, and genomic integrity. Many target genes are modulated by c-Myc, and some can recapitulate a limited number of the above functions. Because most of these have been assessed in cells which also express endogenous c-Myc, however, it is not clear to what extent its proper regulation is also required.

View Article and Find Full Text PDF

We have previously described a transgenic mouse model of epidermal neoplasia wherein expression of a switchable form of c-Myc, MycER(TAM), is targeted to the postmitotic suprabasal keratinocytes of murine epidermis via the involucrin promoter. Sustained activation of c-MycER(TAM) results in a progressive neoplastic phenotype characterized by aberrant ectopic proliferation and delayed differentiation of suprabasal keratinocytes, culminating in papillomatosis. Transcription of the Id2 gene is regulated by Myc family proteins.

View Article and Find Full Text PDF

c-myc nullizygous fibroblasts (KO cells) were used to compare the abilities of c-myc, N-myc and L-myc oncoproteins to accelerate growth, promote apoptosis, revert morphology, and regulate the expression of previously described c-myc target genes. All three myc oncoproteins were expressed following retroviral transduction of KO cells. The proteins all enhanced the growth rate of KO cells and significantly shortened the cell cycle transition time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!