The coxsackie B3 virus oriR is an element of viral RNA thought to promote the assembly of a ribonucleoprotein complex involved in the initiation of genome replication. The mutual orientation of its two helical domains X and Y is determined by a kissing interaction between the loops of these domains. Here, a genetic approach was worked out to identify spatial orientation-dependent recognition signals in these helices. Spatial orientation changes (due to linear and rotational shifts) were introduced by appropriate insertions/deletions of a single base pair into one or both of the domains, and phenotypic consequences caused by these mutations were studied. The insertion of a base pair into domain Y caused a defect in viral reproduction that could be suppressed by a base-pair insertion into domain X. Similarly, a defect in viral replication caused by a base-pair deletion from domain X could be suppressed by a base-pair deletion from domain Y. Thus, certain areas of the two domains should cross-talk to one another in the sense that a change of space position of one of them required an adequate reply (change of space position) from the other. Phenotypic effects of the local rotation of one or more base pairs (and of some other mutations) in either domain X or domain Y suggested that the two most distal base pairs of these domains served as orientation-dependent recognizable signals. The results were also consistent with the notion that the recognition of the distal base pair of domain Y involved a mechanism similar to the intercalation of an amino acid residue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1369974PMC
http://dx.doi.org/10.1017/s1355838200000480DOI Listing

Publication Analysis

Top Keywords

base pair
12
orientation-dependent recognition
8
pair domain
8
defect viral
8
suppressed base-pair
8
base-pair deletion
8
deletion domain
8
change space
8
space position
8
base pairs
8

Similar Publications

Pyrimidinergic P2Y1-Like Nucleotide Receptors Are Functional in Rat Conjunctival Goblet Cells.

Invest Ophthalmol Vis Sci

January 2025

Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.

Purpose: To investigate the presence of uridine-5'-triphosphate (UTP)-activated P2Y1-like nucleotide receptors (P2Y2R, P2Y4R, and P2Y6R) in conjunctival goblet cells (CGCs) and determine if they increase intracellular Ca2+ concentration ([Ca2+]i) and induce mucin secretion.

Methods: Adult, male rat conjunctiva was used for culture of CGCs. To investigate the expression of P2YRs, mRNA was extracted from CGCs and used for reverse transcription PCR (RT-PCR) with commercially obtained primers specific to P2Y2R, P2Y4R, and P2Y6R.

View Article and Find Full Text PDF

Segment-specific promoter activity for RNA synthesis in the genome of Oz virus, genus Thogotovirus.

Virology

January 2025

Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan. Electronic address:

Oz virus (OZV), a tick-borne, six-segmented negative-strand RNA virus in the genus Thogotovirus, caused a fatal human infection in Japan in 2023. To study viral RNA synthesis, we developed an OZV minigenome assay using mammalian cells. This revealed variations in promoter activities among the six genome segments.

View Article and Find Full Text PDF

Read, Eliminate, and Focus: A reading comprehension paradigm for distant supervised relation extraction.

Neural Netw

January 2025

College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China; Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, 300350, China; Tianjin Key Laboratory of Advanced Networking, Tianjin, 300350, China. Electronic address:

Distant supervision aligns the unstructured text to the knowledge base, thereby enabling automatic machine annotation. Nevertheless, this inevitably introduces a considerable amount of noise. Distant supervised relation extraction models aggregate all sentences sharing the same entity pairs into bags and employ various attention mechanisms to reduce the impact of noisy instances.

View Article and Find Full Text PDF

High-throughput method characterizes hundreds of previously unknown antibiotic resistance mutations.

Nat Commun

January 2025

Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK.

A fundamental obstacle to tackling the antimicrobial resistance crisis is identifying mutations that lead to resistance in a given genomic background and environment. We present a high-throughput technique - Quantitative Mutational Scan sequencing (QMS-seq) - that enables quantitative comparison of which genes are under antibiotic selection and captures how genetic background influences resistance evolution. We compare four E.

View Article and Find Full Text PDF

Combining experiment and theory, the mechanisms of H2 activation by the potassium-bridged aluminyl dimer K2[Al(NON)]2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tertbutyl-9,9-dimethylxanthene) and its monomeric K+-sequestered counterpart have been investigated. These systems show diverging reactivity towards the activation of dihydrogen, with the dimeric species undergoing formal oxidative addition of H2 at each Al centre under ambient conditions, and the monomer proving to be inert to dihydrogen addition. Noting that this K+ dependence is inconsistent with classical models of single-centre reactivity for carbene-like Al(I) species, we rationalize these observations instead by a cooperative frustrated Lewis pair (FLP)-type mechanism (for the dimer) in which the aluminium centre acts as the Lewis base and the K+ centres as Lewis acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!