Changing seating posture can extend the amount of time a person can safely remain seated without damaging tissue or becoming fatigued. The Excelsior is an electrically powered wheelchair that utilizes sit-to-stand (STS) and sit-to-recline (STR) motions to aid in pressure relief. The motion of the wheelchair seating system must closely follow anatomical paths or ulcers may develop from the resulting shear forces. Displacement between the person and the wheelchair seating surface is one measure of these shear forces. The displacement between a Hybrid II 50th percentile anthropometric test dummy (ATD) and the seating surface of the Excelsior wheelchair was examined during STS and STR with two cushions, a Jay Active and a low-profile Roho cushion. The difference between the backrest and ATD back angles were 4.29 degrees +/- 2.13 degrees and 1.78 degrees +/- 1.73 degrees for the Roho and Jay cushions respectively during STS and 3.32 degrees +/- 4.21 degrees and 10.71 degrees +/- 6.20 degrees during STR. These were statistically significant at p<.05. During STS, shear displacement between the Hybrid II back and Excelsior backrest did not exceed 1.5 cm for either cushion. ATD thigh-to-seat displacements were 2.5 cm for the Jay and 3.0 cm for the Roho cushion. STR produced dummy thigh-to-seat displacements of 1.5 cm and 3.5 cm for the Jay and Roho cushions respectively. Shear displacement in the ATD back was about 3.5 cm for the Roho and 6 cm for the Jay. The latter displacement should be reduced; however, the other conditions are marginal or acceptable. Hysteresis was acceptable or better for all cushion/motion combinations, with the highest net displacement of about 2.5 cm.
Download full-text PDF |
Source |
---|
Biotechnol Biofuels Bioprod
January 2025
Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, China.
Background: To analyze the effects of the positioning of a bolt in the femoral neck system (FNS) on the short-term outcomes of middle-aged and young adults with displaced femoral neck fractures (FNFs).
Methods: This was a retrospective study involving 114 middle-aged and young adults with displaced FNFs who were surgically treated with internal fixation via the FNS in the Department of Orthopedics, Suzhou Municipal Hospital, from December 2019 to January 2023. The degree of deviation of the central axis of the femoral head and neck from the tip of the bolt (W), the tip‒apex distance (TAD) and the length of femoral neck shortening (LFNS) were measured on postoperative X-ray and computed tomography (CT) scan images.
BMC Gastroenterol
January 2025
Department of Pediatrics, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
Background: The increased apoptosis of bile duct epithelial cells (BECs) due to some damage factors is considered the initiating factor in the occurrence and progression of biliary atresia (BA). Vitamin D receptor (VDR) is thought to play a crucial role in maintaining the intrinsic immune balance and integrity of bile duct epithelial cells (BECs). To investigate the role of VDRs in the pathogenesis and progression of BA using in vitro and in vivo models.
View Article and Find Full Text PDFBMC Emerg Med
January 2025
Department of Emergency Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No.138, Sheng Li Road, Tainan city, 704, Taiwan.
Background: Out-of-hospital cardiac arrest (OHCA) presents significant challenges with low survival rates, emphasizing the need for effective bystander CPR training. In Basic Life Support (BLS) training, the role of instructors is pivotal as they assess and correct learners' cardiopulmonary resuscitation (CPR) techniques to ensure proficiency in life-saving skills. This study evaluates the concordance between CPR quality assessments by Basic Life Support (BLS) instructors and those determined through Quantitative CPR (QCPR) devices, utilizing data from BLS courses conducted at National Cheng Kung University Hospital from October 2017 to April 2018.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11461, Riyadh, Saudi Arabia.
Quantitative structure-property relationship (QSPR) modeling has emerged as a pivotal tool in the field of medicinal chemistry and drug design, offering a predictive framework for understanding the correlation between chemical structure and physicochemical properties. Topological indices are mathematical descriptors derived from the molecular graphs that capture structural features and connectivity, playing a crucial role in QSPR analysis by quantitatively relating chemical structures to their physicochemical properties and biological activities. Lung cancer is characterized by its aggressive nature and late-stage diagnosis, often limiting treatment options and significantly impacting patient survival rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!