Michael adducts of ascorbic acid with alpha,beta-unsaturated carbonyl compounds have been shown to be potent inhibitors of protein phosphatase 1 (PP1) without affecting cell viability at the respective concentrations. Here we were able to show that higher concentrations can partially inhibit PP2A activity and concomitantly induce apoptotic cell death. A nitrostyrene adduct of ascorbic acid proved to be a more potent and effective inhibitor of PP2A as well as a stronger inducer of apoptosis. These adducts only slightly lost their cytotoxic potential in multidrug resistant cells that were 10-fold less sensitive to apoptosis induction by okadaic acid and vinblastine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-894x(00)00294-8DOI Listing

Publication Analysis

Top Keywords

ascorbic acid
12
michael adducts
8
adducts ascorbic
8
inhibitors protein
8
protein phosphatase
8
acid
4
acid inhibitors
4
phosphatase inducers
4
inducers apoptosis
4
apoptosis michael
4

Similar Publications

Background: Surgical methods of gingival depigmentation can be challenging, particularly if the gingival phenotype is thin due to the risk of gingival recession and bone exposure. Thus, exploring alternative, non-surgical, minimally invasive treatment modalities is warranted. In dermatology, vitamin C is extensively used for depigmentation and microneedling for collagen induction, with limited literature about its usage for improving gingival esthetics.

View Article and Find Full Text PDF

This study is focused on the design, synthesis, and evaluation of some sulfonamide derivatives for their inhibitory effects on human carbonic anhydrase (hCA) enzymes I, II, IX, and XII as well as for their antioxidant activity. The purity of the synthesized molecules was confirmed by the HPLC purity analysis and was found in the range of 93%-100%. The inhibition constant (K) against hCA I ranged from 0.

View Article and Find Full Text PDF

Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.

Small Methods

January 2025

Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

Melatonin (MT), an indole compound, can boost plant growth under abiotic stress conditions. This experiment aims to elucidate the synergistic effect of MT and ascorbic acid (AsA) in mitigating salinity stress by assessing the photosynthetic and antioxidant capacity of the maize inbred lines H123 and W961. The results indicated that exogenous MT and AsA significantly improved photosynthetic efficiency and biomass of maize under salinity stress.

View Article and Find Full Text PDF

Few studies have explored the impact of blue light-emitting diode (BL) irradiation combined with different storage temperatures on antioxidant defense and cell wall metabolic activities related to the quality deterioration of postharvest strawberries. This study investigates the effects of BL exposure as a non-chemical preservation strategy to improve the postharvest quality of strawberries stored at 22 °C and 8 °C. Over a 10-day storage period, BL irradiation significantly reduced respiratory and ethylene production rates, while preserving fruit firmness and increasing the contents of soluble sugar and total phenol at both temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!