We have developed a novel liposome-mediated immunogene therapy using interleukin 2 (IL-2) and B7.1 in a murine bladder cancer model. A carcinogen-induced murine bladder cancer cell line, MBT-2, was transfected with cationic liposome 1,2-dimyristyloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide/dioleolylphosphatidylethanolamine and IL-2 plasmid. The optimized transfection condition generated IL-2 levels of 245-305 ng/10(6) cells/24 h, 100-fold higher than the levels seen with retrovirus transfection. Ninety percent of the peak level of IL-2 production was maintained for up to 11 days after transfection. Animal studies were conducted in C3H/HeJ female mice with 2 x 10(4) MBT-2 cells implanted orthotopically on day 0. Multiple vaccination schedules were performed with i.p. injection of 5 x 10(6) IL-2 and/or B7.1 gene-modified cell preparations. The greatest impact on survival was observed with the day 5, 10, and 15 regimen. Control animals receiving retrovirally gene-modified MBT-2/IL-2 cell preparations had a median survival of 29 days. Animals receiving the IL-2 liposomally gene-modified cell preparation alone had a median survival of 46 days. Seventy-five percent of animals receiving IL-2 followed by B7.1 gene-modified tumor vaccines were the only group to show complete tumor-free survival at day 60. All of these surviving animals rejected the parental MBT-2 tumor rechallenge and survived at day 120 with a high CTL response. In conclusion, liposome-mediated transfection demonstrates a clear advantage as compared with the retroviral system in the MBT-2 model. Multi-agent as opposed to single-agent cytokine gene-modified tumor vaccines were beneficial. These "targeted" sequential vaccinations using IL-2 followed by B7.1 gene-modified tumor cells significantly increased a systemic immune response that translated into increased survival.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!