GRP1 and the related proteins ARNO and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. Here we show the PH domains of all three proteins exhibit relatively high affinity for dioctanoyl phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P(3)), with K(D) values of 0.05, 1.6 and 1.0 micrometer for GRP1, ARNO, and cytohesin-1, respectively. However, the GRP1 PH domain was unique among these proteins in its striking selectivity for PtdIns(3,4, 5)P(3) versus phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)), for which it exhibits about 650-fold lower apparent affinity. Addition of a glycine to the Gly(274)-Gly(275) motif in GRP1 greatly increased its binding affinity for PtdIns(4,5)P(2) with little effect on its binding to PtdIns(3,4,5)P(3), while deletion of a single glycine in the corresponding triglycine motif of the ARNO PH domain markedly reduced its binding affinity for PtdIns(4,5)P(2) but not for PtdIns(3,4,5)P(3). In intact cells, the hemagglutinin epitope-tagged PH domain of GRP1 was recruited to ruffles in the cell surface in response to insulin, as were full-length GRP1 and cytohesin-1, but the PH domain of cytohesin-1 was not. These data indicate that the unique diglycine motif in the GRP1 PH domain, as opposed to the triglycine in ARNO and cytohesin-1, directs its remarkable PtdIns(3,4,5)P(3) binding selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M002435200 | DOI Listing |
Biochemistry
July 2010
Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
The Arf exchange factor Grp1 selectively binds phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P(3)], which is required for recruitment to the plasma membrane in stimulated cells. The mechanisms for phosphoinositide recognition by the PH domain, catalysis of nucleotide exchange by the Sec7 domain, and autoinhibition by elements proximal to the PH domain are well-characterized. The N-terminal heptad repeats in Grp1 have also been shown to mediate homodimerization in vitro as well as heteromeric interactions with heptad repeats in the FERM domain-containing protein Grsp1 both in vitro and in cells [Klarlund, J.
View Article and Find Full Text PDFMol Cell
November 2007
Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
Arf GTPases regulate membrane trafficking and actin dynamics. Grp1, ARNO, and Cytohesin-1 comprise a family of phosphoinositide-dependent Arf GTPase exchange factors with a Sec7-pleckstrin homology (PH) domain tandem. Here, we report that the exchange activity of the Sec7 domain is potently autoinhibited by conserved elements proximal to the PH domain.
View Article and Find Full Text PDFMol Cell Biochem
December 2007
Division of Rheumatology, Department of Medicine, Faculty of Medicine, Centre de Recherche Clinique Etienne-Lebel, University of Sherbrooke, 3001, 12th Avenue North, J1H 5N4 Fleurimont, Sherbrooke, QC, Canada.
Cytohesins are guanine-nucleotide exchange factors (GEF) for the Arf family of GTPases. One member of the Arf family, ARF6, plays an active role in the intracellular trafficking of G protein-coupled receptors. We have previously reported that Galphaq signaling leads to the activation of ARF6, possibly through a direct interaction with cytohesin-2/ARNO.
View Article and Find Full Text PDFCurr Biol
April 2007
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
The small GTPase Arf6 regulates endocytosis, actin dynamics, and cell adhesion, and one of its major activators is the exchange factor Arf nucleotide-binding site opener (ARNO), also called cytohesin-2 [1, 2]. ARNO must be recruited from the cytosol to the plasma membrane in order to activate Arf6, and in addition to a Sec7 nucleotide-exchange domain it contains a C-terminal pleckstrin homology (PH) domain that binds phosphoinositides [3, 4]. ARNO and its three relatives, cytohesin-1, Grp1/cytohesin-3, and cytohesin-4, are expressed as two splice variants, with either two or three glycines in a loop in the phosphoinositide-binding pocket of the PH domain [5, 6].
View Article and Find Full Text PDFEMBO J
October 2004
Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
The pleckstrin homology (PH) domains of the homologous proteins Grp1 (general receptor for phosphoinositides), ARNO (Arf nucleotide binding site opener), and Cytohesin-1 bind phosphatidylinositol (PtdIns) 3,4,5-trisphosphate with unusually high selectivity. Remarkably, splice variants that differ only by the insertion of a single glycine residue in the beta1/beta2 loop exhibit dual specificity for PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2). The structural basis for this dramatic specificity switch is not apparent from the known modes of phosphoinositide recognition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!