A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

7H-benzo[c]fluorene: a major DNA adduct-forming component of coal tar. | LitMetric

7H-benzo[c]fluorene: a major DNA adduct-forming component of coal tar.

Carcinogenesis

Rutgers, The State University of New Jersey, College of Pharmacy, Department of Pharmaceutical Chemistry, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.

Published: August 2000

Coal tar is a complex mixture that exhibits high carcinogenic potency in lungs of animals when administered in the diet. Studies have noted that lung tumor induction does not correlate with the benzo[a]pyrene content of coal tar, suggesting that other hydrocarbons may be involved in the observed tumorigenicity. Our previous studies have demonstrated that a major 'unknown' chemical-DNA adduct is formed in the lung of mice exposed to coal tar. We have used an in vitro rat microsomal activation system to generate the 'unknown' adduct with neat coal tar and fractions of coal tar obtained by chemical fractionation and HPLC. Chemical-DNA adduct formation was evaluated by (32)P-postlabeling using both multi-dimensional TLC and HPLC. GC-MS analysis of the coal tar fractions obtained from HPLC, which produced the 'unknown' adduct in vitro, demonstrated that the adducting hydrocarbon had a mass of 216. A careful evaluation of candidate hydrocarbons led to the conclusion that a benzofluorene derivative may be responsible for forming the 'unknown' chemical-DNA adduct. Comparative in vitro and in vivo studies on the adducting properties of all three isomers of benzofluorene indicated that 7H-benzo[c]fluorene is responsible for producing the 'unknown' adduct observed in the lung of mice ingesting coal tar. Animal feeding studies also demonstrated that 7H-benzo[c]fluorene formed considerably more lung DNA adducts than 11H-benzo[a]fluorene and 11H-benzo[b]fluorene. These data indicate that the four-ring polycyclic aromatic hydrocarbon 7H-benzo[c]fluorene, a hydrocarbon not previously shown to form DNA adducts in lung, is in fact a potent lung DNA adductor and is a candidate PAH for causing lung tumors in animals treated with coal tar.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/21.8.1601DOI Listing

Publication Analysis

Top Keywords

coal tar
36
chemical-dna adduct
12
'unknown' adduct
12
coal
9
tar
9
studies demonstrated
8
'unknown' chemical-dna
8
lung mice
8
tar fractions
8
lung dna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!