HER-2/neu (neu-N) transgenic mice, which express the nontransforming rat proto-oncogene, develop spontaneous focal mammary adenocarcinomas beginning at 5-6 months of age. The development and histology of these tumors bears a striking resemblance to what is seen in patients with breast cancer. We have characterized the immunological responses to HER-2/neu (neu) in this animal model. neu-positive tumor lines, which were derived from spontaneous tumors that formed in neu-N animals, are highly immunogenic in parental, FVB/N mice. In contrast, a 100-fold lower tumor challenge is sufficient for growth in 100% of transgenic animals. Despite significant tolerance to the transgene, neu-specific immune responses similar to those observed in breast cancer patients can be demonstrated in neu-N mice prior to vaccination. Both cellular and humoral neu-specific responses in transgenic mice can be boosted with neu-specific vaccination, although to a significantly lesser degree than what is observed in FVB/N mice, indicating that the T cells involved are less responsive than in the nontoleragenic parental strain. Using irradiated whole-cell and recombinant vaccinia virus vaccinations we are able to protect neu-N mice from a neu-expressing tumor challenge. T-cell depletion experiments demonstrated that the observed protection is T cell dependent. The vaccine-dependent neu-specific immune response is also sufficient to delay the onset of spontaneous tumor formation in these mice. These data suggest that, despite tolerance to neu in this transgenic model, it is possible to immunize neu-specific T cells to achieve neu-specific tumor rejection in vivo. These transgenic mice provide a spontaneous tumor model for identifying vaccine approaches potent enough to overcome mechanisms of immune tolerance that are likely to exist in patients with cancer.

Download full-text PDF

Source

Publication Analysis

Top Keywords

transgenic mice
16
mice
9
tumor rejection
8
breast cancer
8
fvb/n mice
8
tumor challenge
8
despite tolerance
8
neu-specific immune
8
neu-n mice
8
spontaneous tumor
8

Similar Publications

Chronic low-grade inflammation observed in older adults, termed inflammaging, is a common feature underlying a multitude of aging-associated maladies including a decline in hematopoietic activity. However, whether suppression of inflammaging can preserve hematopoietic health span remains unclear, in part because of a lack of tools to measure inflammaging within hematopoietic stem cells (HSCs). Here, we identify thrombospondin-1 (Thbs1) as an essential regulator of inflammaging within HSCs.

View Article and Find Full Text PDF

The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.

View Article and Find Full Text PDF

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

Transcriptional regulation of adipocyte lipolysis by IRF2BP2.

Sci Adv

January 2025

Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by posttranslational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis.

View Article and Find Full Text PDF

This study assessed the feasibility of miR17 ~ 92-based antiresorptive strategy by determining the effects of conditional transgenic (cTG) overexpression of miR17 ~ 92 in myeloid cells on bone and osteoclasts. Osteoclasts of male and female cTG mutant mice each showed 3- to fivefold overexpression of miR17 ~ 92 cluster genes compared to those of age- and sex-matched wildtype (WT) littermates. Male but not female cTG mutant mice had more trabecular and cortical bones as well as lower bone resorption reflected by reduction in osteoclast number and resorbing surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!