We report on a large four-generation Austrian family with autosomal dominant distal hereditary motor neuronopathy type V (distal HMN V). Forty-seven at-risk family members, of whom 21 were definitely affected, underwent detailed clinical, electrophysiological and genetic studies. The age at onset was in the second decade of life in most affected individuals, but clinical presentation was rather variable. While the majority of patients were primarily disabled by progressive asymmetrical wasting of the thenar and the first dorsal interosseus muscles, others had marked foot deformity and gait disturbance with the occasional absence of hand involvement. Sensation sense was normal except for the reduced response to vibration. Many individuals showed brisk tendon reflexes and some elevated muscle tone in the lower limbs, but extensor plantar responses were rarely observed. Electrophysiological evaluation revealed normal or reduced motor nerve conduction velocities, normal or prolonged distal motor latencies, and low compound motor action potentials, depending on the degree of muscle wasting. Sensory nerve studies were usually within the normal range or slightly to moderately abnormal in older or severely affected persons. Electromyography showed high-amplitude motor unit potentials and reduced recruitment compatible with anterior horn cell degeneration. Central motor conduction times were prolonged in two-thirds of the patients. Molecular genetic studies excluded Charcot-Marie-Tooth 1A syndrome and proximal spinal muscular atrophy linked to chromosome 5q as well as the known gene loci for distal HMN II on chromosome 12q, HMN V on chromosome 7p and juvenile amyotrophic lateral sclerosis on chromosome 9q. The findings in this family thus provide detailed clinical and electrophysiological information on HMN V and demonstrate broad phenotypic variability in this disorder. Hallmark features are discussed that appear to be most reliable to differentiate this type of HMN V from other variants of hereditary neuropathies, and a set of diagnostic criteria is proposed. Furthermore, this is the first report of prolonged central motor conduction times in HMN V, which indicates additional involvement of the central motor pathways in this disease. Finally, molecular genetic studies demonstrate genetic heterogeneity, suggesting the existence of at least a second genetic subtype in HMN V.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/123.8.1612DOI Listing

Publication Analysis

Top Keywords

clinical electrophysiological
12
genetic studies
12
central motor
12
motor
9
hereditary motor
8
motor neuronopathy
8
neuronopathy type
8
electrophysiological genetic
8
distal hmn
8
detailed clinical
8

Similar Publications

[Research advances in reward positivity and internalizing and externalizing problems in children and adolescents].

Zhongguo Dang Dai Er Ke Za Zhi

January 2025

Department of Child and Adolescent Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong 272051, China.

Adolescence is a critical period for the development of the reward circuit, and reward positivity (RewP) is one of the electrophysiological indicators reflecting reward processing. Many studies have shown that abnormalities in RewP is closely associated with internalizing and externalizing problems in children and adolescents. In addition, factors such as stressful life events and sleep disorders can affect reward-related brain activity and increase the risk of various psychopathological problems in this population.

View Article and Find Full Text PDF

Background: Initial clinical studies of pulsed field ablation (PFA) to treat atrial fibrillation (AF) indicated a >90% durability rate of pulmonary vein isolation (PVI). However, these studies were largely conducted in single centers and involved a limited number of operators. The electrophysiological findings and outcomes in patients undergoing repeat ablation after an initial PF ablation for AF are incompletely understood.

View Article and Find Full Text PDF

Seizure detection via reservoir computing in MoS-based charge trap memory devices.

Sci Adv

January 2025

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

Neurological disorders are a substantial global health burden, affecting millions of people worldwide. A key challenge in developing effective treatments and preventive measures is the realization of low-power wearable systems with early detection capabilities. Traditional strategies rely on machine learning algorithms, but their computational demands often exceed what miniaturized systems can provide.

View Article and Find Full Text PDF

Significance: The precise identification and preservation of functional brain areas during neurosurgery are crucial for optimizing surgical outcomes and minimizing postoperative deficits. Intraoperative imaging plays a vital role in this context, offering insights that guide surgeons in protecting critical cortical regions.

Aim: We aim to evaluate and compare the efficacy of intraoperative thermal imaging (ITI) and intraoperative optical imaging (IOI) in detecting the primary somatosensory cortex, providing a detailed assessment of their potential integration into surgical practice.

View Article and Find Full Text PDF

Atrial flutter (AFL), defined as macro-re-entrant atrial tachycardia, is associated with debilitating symptoms, stroke, heart failure, and increased mortality. AFL is classified into typical, or cavotricuspid isthmus (CTI)-dependent, and atypical, or non-CTI-dependent. Atypical AFL is a heterogenous group of re-entrant atrial tachycardias that most commonly occur in patients with prior heart surgery or catheter ablation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!