The alpha1-antichymotrypsin A-allele in German Parkinson disease patients.

J Neural Transm (Vienna)

Molecular Neuropathology Laboratory, Institute of Neuropathology, Ludwig-Maximilians-University, Munich, Federal Republic of Germany.

Published: August 2000

An increased frequency of the A-allele of the alpha-antichymotrypsin (ACT) gene has been recently described in Japanese patients suffering from Parkinson disease (PD). In the present study, we have analyzed 62 German PD patients with regard to their ACT and APOE genotypes and compared them to 53 controls without clinical or pathological evidence of neurodegenerative disease. The A-allele frequency was 47% in PD patients compared to 54% in control cases excluding ACT as a major susceptibility factor for PD in the Caucasian population. Yet, ACT-A allele frequencies were significantly different (p < 0.001) between Japanese and German controls. Therefore, although our data do not suggest that the alpha1-ACT polymorphism is a significant risk factor for the development of PD, a consideration of differences in genetic background seems warranted when evaluating susceptibility factors for neurodegenerative disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s007020050193DOI Listing

Publication Analysis

Top Keywords

parkinson disease
8
neurodegenerative disease
8
alpha1-antichymotrypsin a-allele
4
a-allele german
4
german parkinson
4
disease
4
patients
4
disease patients
4
patients increased
4
increased frequency
4

Similar Publications

Smart Polymeric 3D Microscaffolds Hosting Spheroids for Neuronal Research via Quantum Metrology.

Adv Healthc Mater

January 2025

INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, Braga, 4715-330, Portugal.

Toward the aim of reducing animal testing, innovative in vitro models are required. Here, this study proposes a novel smart polymeric microscaffold to establish an advanced 3D model of dopaminergic neurons. These scaffolds are fabricated with Ormocomp via Two-Photon Polymerization.

View Article and Find Full Text PDF

Epidemiologic study suggests that nicotine reduces the risk of Parkinson's disease (PD) and thus could serve as a potential treatment. In this study, we aimed to investigate the effect of nicotine on the behavioral phenotypes and pathological characteristics of mice induced by human alpha-synuclein preformed fibers (α-syn-PFF). Mice were injected with 5 µg of human α-syn-PFF in the hippocampus while administering nicotine-containing drinking water (200 µg/mL).

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive disorder that affects the nervous system and causes regions of the brain to deteriorate. In this study, we investigated the effects of MR-guided focused ultrasound (MRgFUS) for the delivery of human mesenchymal stem cells (MSCs) on the 6-hydroxydopamine (6-HODA)-induced PD rat model. MRgFUS-induced blood-brain barrier (BBB) permeability modulation was conducted using an acoustic controller with the targets at the striatum (ST) and SN.

View Article and Find Full Text PDF

Objective: To map evidence on the characteristics, effectiveness, and potential mechanisms of motor imagery interventions targeting cognitive function and depression in adults with neurological disorders and/or mobility impairments.

Data Sources: Six English databases (The Cochrane Library, PubMed, Embase, Scopus, Web of Sciences, and PsycINFO), two Chinese databases (CNKI and WanFang), and a gray literature database were searched from inception to December 2024.

Review Methods: This scoping review followed the Joanna Briggs Institute Scoping Review methodology.

View Article and Find Full Text PDF

Protective effects of wogonin in the treatment of central nervous system and degenerative diseases.

Brain Res Bull

January 2025

Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, 330006 Nanchang, Jiangxi, China. Electronic address:

Wogonin, an O-methylated flavonoid extracted from Scutellaria baicalensis, has demonstrated profound neuroprotective effects in a range of central nervous system (CNS) diseases. This review elucidates the pharmacological mechanisms underlying the protective effects of wogonin in CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury, epilepsy, anxiety, neurodegenerative diseases, and CNS infections. Wogonin modulates key signaling pathways, such as the MAPK, NF-κB, and ROS pathways, contributing to its anti-inflammatory, antioxidant, and antiapoptotic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!