Identifying the cortical areas activated by illusory contours provides valuable information on the mechanisms of object perception. We applied functional magnetic resonance imaging to identify the visual areas of the human brain involved in the perception of a moving Kanizsa-type illusory contour. Our results indicate that, in addition to other cortical regions, areas V5 and V1 are activated. Activity in area V1 was particularly prominent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737131 | PMC |
http://dx.doi.org/10.1093/cercor/10.7.663 | DOI Listing |
Vision Res
January 2025
Laboratoire Cognition Langage et Développement, Université Libre de Bruxelles, Belgium.
Animals and humans possess an adaptive ability to rapidly estimate approximate numerosity, yet the visual mechanisms underlying this process remain poorly understood. Evidence suggests that approximate numerosity relies on segmented perceptual units modulated by grouping cues, with perceived numerosity decreasing when objects are connected by irrelevant lines, independent of low-level features. However, most studies have focused on physical objects.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands.
Introduction: Global Visual Selective Attention (VSA) is the ability to integrate multiple visual elements of a scene to achieve visual overview. This is essential for navigating crowded environments and recognizing objects or faces. Clinical pediatric research on global VSA deficits primarily focuses on autism spectrum disorder (ASD).
View Article and Find Full Text PDFIntroduction: The underlying neural and/or perceptual mechanisms of different visual illusions are still unknown; thus, they continue to be the focus of many ongoing studies. Inconsistencies persist in the empirical findings for understanding how the perception of these illusions evolves over the course of development.
Methods: We assessed 513 participants between 6.
Neuroimage
January 2025
Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea. Electronic address:
We investigated how spatiotemporal neural dynamics underlying perceptual integration changed with the degree of conscious access to a set of backward-masked pacman-shaped inducers that generated the percept of an illusory triangle. We kept the stimulus parameters at a fixed near-threshold level throughout the experiment and recorded electroencephalography from participants who reported the orientation and subjective visibility of the illusory triangle on each trial. Our multivariate pattern analysis revealed that posterior and central areas initially used dynamic neural code and later switched to stable neural code.
View Article and Find Full Text PDFNature
October 2024
Neuroscience Institute and Computer Science Department, Princeton University, Princeton, NJ, USA.
As connectomics advances, it will become commonplace to know far more about the structure of a nervous system than about its function. The starting point for many investigations will become neuronal wiring diagrams, which will be interpreted to make theoretical predictions about function. Here I demonstrate this emerging approach with the Drosophila optic lobe, analysing its structure to predict that three Dm3 (refs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!