Hepatocyte nuclear factor (HNF)-4alpha is a transcription factor that plays an important role in regulation of gene expression in pancreatic beta-cells and in the liver. Heterozygous mutations in the HNF-4alpha gene are responsible for maturity-onset diabetes of the young 1 (MODY1), which is characterized by pancreatic beta-cell-deficient insulin secretion. HNF-4alpha is a major transcriptional regulator of many genes expressed in the liver. However, no liver defect has been identified in individuals with HNF-4alpha mutations. In this study, we have identified HNF-4alpha target genes that are mainly expressed in the liver, including alpha1-antitrypsin, alpha1-antichymotrypsin, alpha-fetal protein, ceruloplasmin, IGF binding protein 1, transferrin, apolipoprotein(AI) [apo(AI)], apo(AII), apo(B), and apo(CIII). Serum levels of these proteins and Lp(a) and triglycerides were measured in 24 members of the HNF-4alpha/MODY1 RW pedigree (Q268X mutation), including 12 diabetic patients with HNF-4alpha mutations (D-HNF4+/-), 6 nondiabetic subjects with HNF-4alpha mutations (N-HNF4+/-), 6 normal relatives (N-HNF4+/+), 6 unrelated normal matched control subjects (N-HNF4+/+), and 12 matched diabetic (non-MODY1-5) patients (D-HNF4+/+). Serum levels of apo(AII), apo(CIII), lipoprotein(a) [Lp(a)], and triglyceride were significantly reduced in HNF4+/- subjects (26.9, 19.8, 12.1, and 72.1 mg/dl, respectively) compared with HNF4+/+ subjects (37.4, 26.5, 45.2, and 124.2 mg/dl, respectively) (P = 0.00001, P = 0.01, P = 0.00006, and P = 0.000003, respectively). This reduction was not found when apo(AII), apo(CIII), Lp(a), and triglyceride levels were compared in D-HNF4+/- versus N-HNF4+/- or in D-HNF4+/+ versus N-HNF4+/+ subjects, which indicates that HNF-4alpha haploinsufficiency rather than hyperglycemia is the primary cause of decreased serum protein and triglyceride concentrations. Furthermore, we determined that genetic or environmental modifiers other than HNF-4alpha do not appear to contribute to the observed decrease of HNF-4alpha-regulated serum proteins. This study demonstrates that a heterozygous HNF-4alpha mutation leads to an HNF-4alpha-dependent hepatocyte secretory defect of liver-specific proteins.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.49.5.832DOI Listing

Publication Analysis

Top Keywords

hnf-4alpha mutations
12
hnf-4alpha
10
triglyceride levels
8
genes expressed
8
expressed liver
8
serum levels
8
apoaii apociii
8
subjects
5
genotype/phenotype relationships
4
relationships hnf-4alpha/mody1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!