Extracellular proteolysis is likely to be a feature of vascular remodeling associated with atherosclerotic and restenotic arteries. To investigate the role of plasminogen-mediated proteolysis in remodeling, polyethylene cuffs were placed around the femoral arteries of mice with single and combined deficiencies in plasminogen and fibrinogen. Neointimal development occurred in all mice and was unaffected by genotype. Significant compensatory medial remodeling occurred in the cuffed arteries of control mice but not in plasminogen-deficient mice. Furthermore, focal areas of medial atrophy were frequently observed in plasminogen-deficient mice but not in control animals. A simultaneous deficit of fibrinogen restored the potential of the arteries of plasminogen-deficient mice to enlarge in association with neointimal development but did not eliminate the focal medial atrophy. An intense inflammatory infiltrate occurred in the adventitia of cuffed arteries, which was associated with enhanced matrix deposition. Adventitial collagen deposition was apparent after 28 days in control and fibrinogen-deficient arteries but not in plasminogen-deficient arteries, which contained persistent fibrin. These studies demonstrate that plasmin(ogen) contributes to favorable arterial remodeling and adventitial collagen deposition via a mechanism that is related to fibrinogen, presumably fibrinolysis. In addition, these studies reveal a fibrin-independent role of plasminogen in preventing medial atrophy in challenged vessels.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.res.87.2.133DOI Listing

Publication Analysis

Top Keywords

plasminogen-deficient mice
12
medial atrophy
12
vascular remodeling
8
neointimal development
8
cuffed arteries
8
arteries plasminogen-deficient
8
adventitial collagen
8
collagen deposition
8
mice
7
arteries
7

Similar Publications

Fibrin aggravates periodontitis through inducing NETs formation from mitochondrial DNA.

Oral Dis

July 2024

Department of Preventive Dentistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.

Objectives: This study investigated the role of fibrin on neutrophil extracellular traps (NETs) formation from neutrophils and to elucidate the involvement of mitochondria in NETs formation during periodontitis.

Materials And Methods: Plasminogen-deficient (Plg) mice were employed to evaluate the effects of fibrin deposition on inflammation, bone resorption, and neutrophil infiltration in periodontal tissues. In addition, in vitro tests evaluated fibrin's impact on neutrophil-driven inflammation.

View Article and Find Full Text PDF

Interplay between platelets, coagulation factors, endothelial cells (ECs), and fibrinolytic factors is necessary for effective hemostatic plug formation. This study describes a 4-dimensional (4D) imaging platform to visualize and quantify hemostatic plug components in mice with high spatiotemporal resolution. Fibrin accumulation after laser-induced vascular injury was observed at the platelet plug-EC interface, controlled by the antagonistic balance between fibrin generation and breakdown.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal metastatic disease associated with robust activation of the coagulation and fibrinolytic systems. However, the potential contribution of the primary fibrinolytic protease plasminogen to PDAC disease progression has remained largely undefined. Mice bearing C57Bl/6-derived KPC (KRas , TRP53 ) tumors displayed evidence of plasmin activity in the form of high plasmin-antiplasmin complexes and high plasmin generation potential relative to mice without tumors.

View Article and Find Full Text PDF

Plasminogen is a protein involved in intravascular and extravascular fibrinolysis, as well as in wound healing, cell migration, tissue formation and angiogenesis. In recent years its role in healing of tympanic perforations has been demonstrated in plasminogen deficient mice. The aim of this work was to fabricate a fibrin-based drug delivery system able to provide a local and sustained release of plasminogen at the wound site.

View Article and Find Full Text PDF

Fibrinogen plays a pathologic role in multiple diseases. It contributes to thrombosis and modifies inflammatory and immune responses, supported by studies in mice expressing fibrinogen variants with altered function or with a germline fibrinogen deficiency. However, therapeutic strategies to safely and effectively tailor plasma fibrinogen concentration are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!