Endothelial cell proliferation induced by HARP: implication of N or C terminal peptides.

Biochem Biophys Res Commun

Laboratory of Molecular Pharmacology, University of Patras, Patras, GR26504, Greece.

Published: July 2000

HARP (Heparin Affin Regulatory Peptide) is a 18-kDa secreted protein displaying high affinity for heparin. It has neurite outgrowth-promoting activity, while there are conflicting results regarding its mitogenic activity. In the present work, we studied the effect of human recombinant HARP expressed in bacterial cells as well as two peptides (HARP residues 1-21 and residues 121-139) on the proliferation of three endothelial cell types derived from human umbilical vein (HUVEC), rat adrenal medulla (RAME), and bovine brain capillaries (BBC) either added as a soluble form in the cell culture medium or coated onto the culture plate. HARP added in a soluble form in the culture medium had no effect on the proliferation of BBC, HUVEC, and RAME cells. However, when immobilized onto the cell culture plate, HARP had a concentration-dependent mitogenic effect on both BBC cells and HUVEC. The peptides presented as soluble factor induced a significant concentration-dependent mitogenic effect on BBC cells but only a small effect on HUVEC and RAME cells. When they were immobilized onto the cell culture plate, the mitogenic effect was much greater. The most responsive cells were BBC that expressed and secreted in the culture medium the higher amounts of HARP.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.2000.3126DOI Listing

Publication Analysis

Top Keywords

cell culture
12
culture medium
12
culture plate
12
endothelial cell
8
peptides harp
8
soluble form
8
plate harp
8
huvec rame
8
rame cells
8
cells immobilized
8

Similar Publications

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.

View Article and Find Full Text PDF

Starch-rich faba bean, yellow lentil, and yellow field pea flours were subjected to submerged fermentation using Aspergillus oryzae and Lactobacillus plantarum starter mono- or co-cultures, to increase protein contents of the flours. Fermentation mixes were supplemented with up to 35 g/L urea, ammonium sulfate and/or monoammonium phosphate as nitrogen sources. Protein contents of the flours increased 2-2.

View Article and Find Full Text PDF

Validation of an automated quality control method to test sterility of two advanced therapy medicinal products: Mesenchymal stromal cells and their extracellular vesicles.

Hematol Transfus Cell Ther

November 2024

Hospital São Rafael, Salvador, Bahia, Brazil; Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador, Bahia, Brazil; Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil. Electronic address:

Mesenchymal stromal cells are multipotent cells present in various tissues that are widely studied for relevant therapeutic potential due to their paracrine immunomodulatory and tissue regenerating properties. Many mesenchymal stromal cell-based products are under investigation for the treatment of different clinical conditions. Recently, the therapeutic potential of the extracellular vesicles released by these cells has been under focus, with emphasis on clinical translation.

View Article and Find Full Text PDF

Stereotactic injection of murine brain tumor cells for neuro-oncology studies.

Methods Cell Biol

January 2025

Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States. Electronic address:

Glioblastomas (GBMs) are the most common and aggressive brain tumors, with a poor prognosis. Effective preclinical models are crucial to investigate GBM biology and develop novel treatments. Syngeneic models, which consist in injecting murine GBM cells into mice with a similar genetic background, offer reproducibility, cost-effectiveness, and an intact immune system, making them ideal for immunotherapy research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!