HNF-4 plays a pivotal role in the liver-specific transcription of the chipmunk HP-25 gene.

Eur J Biochem

Hibernation Control Project, Kanagawa Academy of Science and Technology, Mitsubishi Kasei Institute of Life Sciences, Machida, Tokyo, Japan.

Published: August 2000

The gene for chipmunk hibernation-specific protein HP-25 is expressed specifically in the liver. To understand the transcriptional regulation of HP-25 gene expression, we isolated its genomic clones, and characterized its structural organization and 5' flanking region. The gene spans approximately 7 kb and consists of three exons. The transcription start site, as determined by primer extension analysis, is located at 113 bp upstream of the translation initiation codon. Transient transfection studies in HepG2 cells revealed that the 80 bp 5' flanking sequence was sufficient for the liver-specific promoter activity. In a gel retardation assay using HepG2 nuclear extracts, the 5' flanking sequence from -74 to -46 showed a shifted band. All cDNA clones isolated by a yeast one-hybrid system for a protein capable of binding to this 5' flanking sequence encoded HNF-4. HNF-4 synthesized in vitro bound to this sequence in a gel retardation assay. Furthermore, supershift assays with anti-(HNF-4) Ig confirmed that the protein in HepG2 or chipmunk liver nuclear extracts that bound to this sequence was HNF-4. When transfected into HeLa cells, HNF-4 transactivated transcription from the HP-25 gene promoter, and mutation of the HNF-4 binding site abolished transactivation by HNF-4, indicating that HNF-4 plays an important role in HP-25 gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1327.2000.01499.xDOI Listing

Publication Analysis

Top Keywords

hp-25 gene
16
flanking sequence
12
hnf-4
8
hnf-4 plays
8
gene expression
8
gel retardation
8
retardation assay
8
nuclear extracts
8
bound sequence
8
gene
6

Similar Publications

In preeclampsia (PE), pre-existent maternal endothelial dysfunction leads to impaired placentation and vascular maladaptation. The vascular endothelial growth factor (VEGF) pathway is essential in the placentation process and VEGF expression is regulated through post-transcriptional modification by microRNAs (miRNAs). We investigated the expression of VEGF-related circulating miR-16, miR-29b, miR-126, miR-155 and miR-200c in PE vs healthy pregnancies (HPs), and their relation with vascular function, oxidative stress (OS) and systemic inflammation.

View Article and Find Full Text PDF

Label free shotgun proteomics was used to analyse plasma and Longissimus muscle biopsies of Limousin-sired bulls, classified as 5 high-quality and 5 low-quality meat based on sensory texture traits (tenderness, juiciness and chewiness). A total of 31 putative protein biomarkers (16 in plasma and 15 in muscle) differed significantly in abundance between the two quality groups. The proteins were associated with muscle structure, energy metabolism, heat shock proteins, oxidative stress and proteolysis related pathways.

View Article and Find Full Text PDF

The purpose of this study was to determine how dietary macronutrient composition and exogenous neuropeptide Y (NPY) affect mRNA abundance of factors associated with lipid metabolism in chick adipose tissue. Chicks were fed one of three isocaloric (3000kcal metabolizable energy (ME)/kg) diets after hatch: high carbohydrate (HC; control), high fat (HF; 30% of ME from soybean oil) or high protein (HP; 25% crude protein). On day 4 post-hatch, vehicle or 0.

View Article and Find Full Text PDF

Background: Broiler chickens are compulsive feeders that become obese as juveniles and are thus a unique model for metabolic disorders in humans. However, little is known about the relationship between dietary composition, fasting and refeeding and adipose tissue physiology in chicks. Our objective was to determine how dietary macronutrient composition and fasting and refeeding affect chick adipose physiology during the early post-hatch period.

View Article and Find Full Text PDF

The chipmunk hibernation-related protein 25 (HP-25) is involved in the circannual control of hibernation in the brain. The liver-specific expression of the HP-25 gene is repressed in hibernating chipmunks under the control of endogenous circannual rhythms. However, the molecular mechanisms that differentially regulate the HP-25 gene during the nonhibernation and hibernation seasons are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!