Muscle plays a major role in metabolism. Thus it is a major glucose-utilizing tissue in the absorptive state, and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. In some conditions, muscle preferentially uses lipid substrates, such as fatty acids or ketone bodies. Furthermore, muscle is the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters, such as glucose carriers and transporters of carnitine, creatine and amino acids, play a crucial role in muscle metabolism by catalysing the influx or the efflux of substrates across the cell surface. In some cases, the membrane transport process is subjected to intense regulatory control and may become a potential pharmacological target, as is the case with the glucose transporter GLUT4. The goal of this review is the molecular characterization of muscle membrane transporter proteins, as well as the analysis of their possible regulatory role.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221192 | PMC |
http://dx.doi.org/10.1042/bj3490667 | DOI Listing |
Microbiology (Reading)
January 2025
School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia.
Most Gram-negative bacteria synthesize a plethora of cell surface polysaccharides that play key roles in immune evasion, cell envelope structural integrity and host-pathogen interactions. In the predominant polysaccharide Wzx/Wzy-dependent pathway, synthesis is divided between the cytoplasmic and periplasmic faces of the membrane. Initially, an oligosaccharide composed of 3-8 sugars is synthesized on a membrane-embedded lipid carrier, undecaprenyl pyrophosphate, within the cytoplasmic face of the membrane.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland.
Evidence accumulated mitochondria, as the "powerplants of the cell," express several functional receptors for external ligands that modify their function and regulate cell biology. This review sheds new light on the role of these organelles in sensing external stimuli to facilitate energy production for cellular needs. This is possible because mitochondria express some receptors on their membranes that are responsible for their autonomous responses.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Harbin Institute of Technology, School of Chemical Engineering and Technology, No.92, West Da-Zhi Street, Harbin, 150001, China, 150001, harbin, CHINA.
Building an artificial photosynthetic cell from scratch helps to understand the working mechanisms of chloroplasts. It is a challenge to achieve carbon fixation triggered by photosynthetic organelles in an artificial cell. ATP synthase and photosystem II (PSII) are purified and reconstituted onto the phospholipid membrane to fabricate photosynthetic organelles.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, Key Laboratory of Organic Solids, Zhongguancun North First Street 2, 100190, 100190, Beijing, CHINA.
The regulation of oxidative stress in living cells is essential for maintaining cellular processes and signal transduction. However, developing straightforward strategies to activate oxidative stress-sensitive membrane channels in situ poses significant challenges. In this study, we presented a chemiluminescence resonance energy transfer (CRET) system based on a conjugated oligomer, oligo(p-phenylenevinylene)-imidazole (OPV-Im), designed for the activation of transient receptor potential melastatin 2 (TRPM2) calcium channels in situ by superoxide anion (O2•-) without requiring external light sources.
View Article and Find Full Text PDFSmall
January 2025
Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
Developing cost-effective, highly efficient, and durable bifunctional electrocatalysts for water electrolysis remains a significant challenge. Nickel-based materials have shown promise as catalysts, but their efficiency in alkaline electrolytes is still lacking. Fascinatingly, Mott-Schottky catalysts can fine-tune electron density at interfaces, boosting intermediate adsorption and facilitating desorption to reduce the energy barrier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!