Synchronous glucose-dependent [Ca(2+)](i) oscillations in mouse pancreatic islets of Langerhans recorded in vivo.

FEBS Lett

Instituto de Neurociencias-CSIC, Universidad Miguel Hernandez, 03550 San Juan, Alicante, Spain.

Published: July 2000

Using microfluorescence in combination with image-analysis techniques we monitored intracellular calcium ([Ca(2+)](i)) dynamics in mouse islets of Langerhans loaded with fura-2 and recorded in vivo. [Ca(2+)](i) oscillates in the glycaemias range 5-10 mM, the duration of the oscillations being directly proportional to the blood glucose concentration. The analysis of different areas within the same islet shows that [Ca(2+)](i) oscillations are synchronous throughout the islet. These results show that in vivo, individual islets of Langerhans behave as a functional syncytium and suggest the existence of secretory pulses of insulin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(00)01631-8DOI Listing

Publication Analysis

Top Keywords

islets langerhans
12
[ca2+]i oscillations
8
recorded vivo
8
synchronous glucose-dependent
4
[ca2+]i
4
glucose-dependent [ca2+]i
4
oscillations mouse
4
mouse pancreatic
4
pancreatic islets
4
langerhans recorded
4

Similar Publications

The role of B cells in the pathogenesis of type 1 diabetes.

Front Immunol

January 2025

Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.

Type 1 diabetes (T1D) is a metabolic disorder caused by a complete lack of insulin, primarily manifested by hyperglycemia. The mechanisms underlying the onset of T1D are complex, involving genetics, environment, and various unknown factors, leading to the infiltration of various immune components into the islets. Besides T cells, B cells are now considered important contributors to the pathogenesis of T1D, according to recent studies.

View Article and Find Full Text PDF

Debate: Lipid-lowering Therapies and Diabetes Development.

Curr Atheroscler Rep

January 2025

Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße, 30 52074, Aachen, Germany.

Purpose Of Review: This review explores the relationship between lipid-lowering therapies, particularly statins, and the risk of new-onset diabetes (NOD). It examines the underlying mechanisms and evaluates whether other lipid-lowering agents present similar risks.

Recent Findings: Recent meta-analyses further underscore a dose-dependent increase in NOD risk with statin therapy, particularly with high-intensity statins.

View Article and Find Full Text PDF

Pro-inflammatory cytokines, like interleukin-1 beta and interferon gamma, are known to activate signalling pathways causing pancreatic beta cell death and dysfunction, contributing to the onset of diabetes. Targeting cytokine signalling pathways offers a potential strategy to slow or even halt disease progression, reducing reliance on exogenous insulin and improving glucose regulation. This study explores the protective and proliferative effects of breitfussin C (BfC), a natural compound isolated from the Arctic marine hydrozoan Thuiaria breitfussi, on pancreatic beta cells exposed to pro-inflammatory cytokines.

View Article and Find Full Text PDF

Exploring the Potential of Epigallocatechin Gallate in Combating Insulin Resistance and Diabetes.

Nutrients

December 2024

Department of Nutrition and Dietetics, Faculty of Health Sciences, Lokman Hekim University, 06510 Çankaya, Ankara, Turkey.

Background/objectives: In this study, the potential effects are evaluated of epigallocatechin gallate (EGCG) on the prognosis of diabetes and insulin resistance.

Methods: In an experiment, 35 male Wistar albino rats were used and in the streptozotocin (STZ)-induced diabetic rats, the effects were examined of different doses (50 mg/kg, 100 mg/kg, 200 mg/kg) of EGCG on metabolic parameters associated with diabetes and insulin resistance.

Results: The findings show favorable effects of EGCG on fasting blood glucose levels, insulin secretion, insulin resistance, and beta cell function.

View Article and Find Full Text PDF

β-Cell Deletion of Hypoxia-Inducible Factor 1α (HIF-1α) Increases Pancreatic β-Cell Susceptibility to Streptozotocin.

Int J Mol Sci

December 2024

Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.

Type 1 diabetes (T1D) is caused by the immune-mediated loss of pancreatic β-cells. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor which is crucial for cellular responses to low oxygen. Here, we investigate the role of β-cell HIF-1α in β-cell death and diabetes after exposure to multiple low-dose streptozotocin (MLDS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!