Intracellular Ca(2+) stores in chemoreceptor cells of the rabbit carotid body: significance for chemoreception.

Am J Physiol Cell Physiol

Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular and Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain.

Published: July 2000

The notion that intracellular Ca(2+) (Ca(i)(2+)) stores play a significant role in the chemoreception process in chemoreceptor cells of the carotid body (CB) appears in the literature in a recurrent manner. However, the structural identity of the Ca(2+) stores and their real significance in the function of chemoreceptor cells are unknown. To assess the functional significance of Ca(i)(2+) stores in chemoreceptor cells, we have monitored 1) the release of catecholamines (CA) from the cells using an in vitro preparation of intact rabbit CB and 2) the intracellular Ca(2+) concentration ([Ca(2+)](i)) using isolated chemoreceptor cells; both parameters were measured in the absence or the presence of agents interfering with the storage of Ca(2+). We found that threshold [Ca(2+)](i) for high extracellular K(+) (K(e)(+)) to elicit a release response is approximately 250 nM. Caffeine (10-40 mM), ryanodine (0.5 microM), thapsigargin (0.05-1 microM), and cyclopiazonic acid (10 microM) did not alter the basal or the stimulus (hypoxia, high K(e)(+))-induced release of CA. The same agents produced Ca(i)(2+) transients of amplitude below secretory threshold; ryanodine (0.5 microM), thapsigargin (1 microM), and cyclopiazonic acid (10 microM) did not alter the magnitude or time course of the Ca(i)(2+) responses elicited by high K(e)(+). Several potential activators of the phospholipase C system (bethanechol, ATP, and bradykinin), and thereby of inositol 1,4,5-trisphosphate receptors, produced minimal or no changes in [Ca(2+)](i) and did not affect the basal release of CA. It is concluded that, in the rabbit CB chemoreceptor cells, Ca(i)(2+) stores do not play a significant role in the instant-to-instant chemoreception process.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.2000.279.1.C51DOI Listing

Publication Analysis

Top Keywords

chemoreceptor cells
24
intracellular ca2+
12
cai2+ stores
12
ca2+ stores
8
stores chemoreceptor
8
carotid body
8
stores play
8
play role
8
chemoreception process
8
ryanodine microm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!