Cumulative inactivation of tumor suppressor genes and/or amplification of oncogenes lead to progressively more malignant astrocytic tumors. We have analyzed the significance of tumor suppressor genes p53, p21, p16 and retinoblastoma protein (pRb) and proliferative activity for survival in 77 high grade astrocytic tumors. After operation, the patients--25 anaplastic astrocytomas (AA) and 52 glioblastomas (GBs)--were treated with similar radiotherapy. The expression of the suppressor genes and the proliferative activity were analyzed immunohistochemically. p53 immunopositivity was found in 44% of AAs and 46% of GBs. Tumors with aberrant p53 expression had lower proliferation indices than p53 immunonegative tumors. Neither p53 expression nor p21 immunonegativity (52% of AAs and 48% of GBs) correlated with survival. p16 immunostaining was negative in 16% of AAs and in 44% of GBs, and it correlated inversely with survival in both uni- and multivariate analyses. pRb immunostaining was negative only in 8% of both AAs and GBs and the absence of p16 and pRb were mutually exclusive. Ki-67 labelling index (LI) was significantly higher in GBs (26.8%) than in AAs (20.3%), and in multivariate analysis it was an independent prognostic factor for survival. In 48% of AAs Ki-67 LI exceeded 20% and this subset of AAs had similar prognosis as GB. In high grade astrocytic tumors p16 immunonegativity was an independent indicator of poor prognosis in addition to the previously established patient's age, histopathology and Ki-67 LI. Furthermore, there was a subset of AAs with a high proliferation rate (> 20%) in which the histopathological hallmarks of GB were lacking, but which had similarly dismal prognosis as GB.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1006473320474DOI Listing

Publication Analysis

Top Keywords

suppressor genes
16
tumor suppressor
12
high grade
12
astrocytic tumors
12
genes p53
8
p53 p21
8
p21 p16
8
p16 prb
8
ki-67 labelling
8
treated radiotherapy
8

Similar Publications

Triple-negative breast cancer (TNBC) is recognized as the most aggressive subtype of breast cancer. Epigenetic silencing, such as DNA methylation mediated by DNA methyltransferases (DNMTs) plays key roles in TNBC tumorigenesis. Hypomethylating agents (HMAs) such as azacitidine, decitabine, and guadecitabine are key inhibitors of DNMTs, and accumulating evidence has shown their immunogenicity properties.

View Article and Find Full Text PDF

The foremost feature of glioblastoma (GBM), the most frequent malignant brain tumours in adults, is a remarkable degree of intra- and inter-tumour heterogeneity reflecting the coexistence within the tumour bulk of different cell populations displaying distinctive genetic and transcriptomic profiles. GBM with primitive neuronal component (PNC), recently identified by DNA methylation-based classification as a peculiar GBM subtype (GBM-PNC), is a poorly recognized and aggressive GBM variant characterised by nodules containing cells with primitive neuronal differentiation along with conventional GBM areas. In addition, the presence of a PNC component has been also reported in IDH-mutant high-grade gliomas (HGGs), and to a lesser extent to other HGGs, suggesting that regardless from being IDH-mutant or IDH-wildtype, peculiar genetic and/or epigenetic events may contribute to the phenotypic skewing with the emergence of the PNC phenotype.

View Article and Find Full Text PDF

Metabolic Reprogramming and Adaption in Breast Cancer Progression and Metastasis.

Adv Exp Med Biol

January 2025

Department of Molecular Biology, Princeton University, Princeton, NJ, USA.

Recent evidence has revealed that cancer is not solely driven by genetic abnormalities but also by significant metabolic dysregulation. Cancer cells exhibit altered metabolic demands and rewiring of cellular metabolism to sustain their malignant characteristics. Metabolic reprogramming has emerged as a hallmark of cancer, playing a complex role in breast cancer initiation, progression, and metastasis.

View Article and Find Full Text PDF

Iron metabolism in a mouse model of hepatocellular carcinoma.

Sci Rep

January 2025

Institute of Comparative Molecular Endocrinology, Ulm University, 89081, Ulm, Germany.

Hepatocellular carcinoma (HCC) remains the most prevalent type of primary liver cancer worldwide. p53 is one of the most frequently mutated tumor-suppressor genes in HCC and its deficiency in hepatocytes triggers tumor formation in mice. To investigate iron metabolism during liver carcinogenesis, we employed a model of chronic carbon tetrachloride injections in liver-specific p53-deficient mice to induce liver fibrosis, cirrhosis and subsequent carcinogenesis.

View Article and Find Full Text PDF

Nanotherapy has emerged as a promising strategy for the targeted and efficient treatment of melanoma, the most aggressive and lethal form of skin cancer, with minimized systemic toxicity. However, the therapeutic efficacy of cobalt oxide nanoparticles (CoONPs) in melanoma treatment remains unexplored. This study aimed to assess the therapeutic potential of CoONPs in melanoma treatment by evaluating their impact on cell viability, genomic DNA and mitochondrial integrity, reactive oxygen species (ROS) generation and apoptosis induction in melanoma A-375 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!