The value of an early initial coadministration of levodopa (L-dopa) and lisuride in Parkinson's disease was the main goal of the present study. Eighty-two patients with recently diagnosed idiopathic Parkinson's disease were randomized into two groups for treatment with L-dopa alone or L-dopa + lisuride. The trial was double-blinded for the first year and open for the following 4 years. Selegiline (10 mg/day b.i.d.) was added in both groups at the end of the first year. Outcome measures were evolution of L-dopa dosage and Unified Parkinson's Disease Rating Scale scores and subscores, and incidence of motor complications. The dropout rate was higher in the L-dopa group (63.4%) than in the combination group. Motor improvement was better (p < 0.01) in the L-dopa + lisuride group. Expected motor complications were rare, moderate and equivalent in the two groups despite a difference in L-dopa dosage (446.7 vs. 387.5 mg/day). Long-term follow-up demonstrated the L-dopa-sparing effect of lisuride (average 1 mg/day), the beneficial effect of early combination therapy on motor status and the paucity of motor complications in both groups.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000008188DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
16
l-dopa lisuride
12
motor complications
12
combination therapy
8
l-dopa dosage
8
l-dopa
7
lisuride
6
motor
5
five-year follow-up
4
follow-up early
4

Similar Publications

Parkinson's Disease (PD) is a neurodegenerative disorder characterized by the pro-gressive loss of dopaminergic neurons in the substantia nigra, leading to motor dysfunction and non-motor symptoms. Current treatments primarily offer symptomatic relief without halt-ing disease progression. This has driven the exploration of natural compounds with neuropro-tective properties.

View Article and Find Full Text PDF

Introduction: Clinicopathological correlations differ by sex in Lewy body dementia (LBD). However, previous studies have focused on pathological staging systems that place less emphasis on regional pathologies.

Methods: We included 357 people (131 female, 226 male) with a high likelihood of LBD based on pathology from the Brain Bank for Neurodegenerative (Jacksonville, FL).

View Article and Find Full Text PDF

Introduction: Brain age gap (BAG), defined as the difference between MRI-predicted 'brain age' and chronological age, can capture information underlying various neurological disorders. We investigated the pathophysiological significance of the BAG across neurodegenerative disorders.

Methods: We developed a brain age estimator using structural MRIs of healthy-aged individuals from one cohort study.

View Article and Find Full Text PDF

Adeno-associated viral vectors for modeling Parkinson's disease in non-human primates.

Neural Regen Res

January 2025

CNS Gene Therapy Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.

The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor, but extremely challenging. Therapeutic candidates that were successful in preclinical Parkinson's disease animal models have repeatedly failed when tested in clinical trials. While these failures have many possible explanations, it is perhaps time to recognize that the problem lies with the animal models rather than the putative candidate.

View Article and Find Full Text PDF

Chemical exchange saturation transfer MRI for neurodegenerative diseases: an update on clinical and preclinical studies.

Neural Regen Res

January 2025

Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.

Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke. In recent years, the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation. This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!