Signature of superfluid density in the single-particle excitation spectrum of Bi(2)Sr(2)CaCu(2)O(8+delta).

Science

Department of Physics, Applied Physics, and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA 94305, USA. Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan. Department of Applied Chem.

Published: July 2000

AI Article Synopsis

  • The study examines how the photoemission spectra of Bi(2)Sr(2)CaCu(2)O(8+delta) change with doping and temperature, showing a notable correlation with superfluid density.
  • In the superconducting state, the intensity of photoemission peaks is influenced by superfluid density and condensation energy, suggesting a link between these properties.
  • An unexpected sharp change in peak intensity occurs close to the superconducting transition temperature, rather than at the point where the energy gap opens, raising questions about the nature of high-temperature superconductivity.

Article Abstract

We report that the doping and temperature dependence of photoemission spectra near the Brillouin zone boundary of Bi(2)Sr(2)CaCu(2)O(8+delta)exhibit unexpected sensitivity to the superfluid density. In the superconducting state, the photoemission peak intensity as a function of doping scales with the superfluid density and the condensation energy. As a function of temperature, the peak intensity shows an abrupt behavior near the superconducting phase transition temperature where phase coherence sets in, rather than near the temperature where the gap opens. This anomalous manifestation of collective effects in single-particle spectroscopy raises important questions concerning the mechanism of high-temperature superconductivity.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.289.5477.277DOI Listing

Publication Analysis

Top Keywords

superfluid density
12
peak intensity
8
signature superfluid
4
density single-particle
4
single-particle excitation
4
excitation spectrum
4
spectrum bi2sr2cacu2o8+delta
4
bi2sr2cacu2o8+delta report
4
report doping
4
temperature
4

Similar Publications

Typical path integral Monte Carlo approaches use the primitive approximation to compute the probability density for a given path. In this work, we develop the pair discrete variable representation (pair-DVR) approach to study molecular rotations. The pair propagator, which was initially introduced to study superfluidity in condensed helium, is naturally well-suited for systems interacting with a pairwise potential.

View Article and Find Full Text PDF
Article Synopsis
  • Excitons, which are pairs of electrons and holes held together by Coulomb forces, can form a superfluid at low temperatures due to their bosonic properties.
  • The research involves directly imaging this exciton superfluid in a specific material setup (MoSe-WSe heterostructure), demonstrating a significant level of order across the sample.
  • The study also details how variations in exciton density and temperature help construct a phase diagram, revealing that the superfluid state can persist up to 15 K, aligning well with theoretical expectations and paving the way for advancements in quantum devices and superfluid research.
View Article and Find Full Text PDF

We study superfluid helium droplets multiply charged with Na+ or Ca+ ions. When stable, the charges are found to reside in equilibrium close to the droplet surface, thus representing a physical realization of Thomson's model. We find the minimum radius of the helium droplet that can host a given number of ions using a model whose physical ingredients are the solvation energy of the cations, calculated within the helium density functional theory approach, and their mutual Coulomb repulsion energy.

View Article and Find Full Text PDF

Vacancies in solid-state physics are underexplored in materials with strong electron-electron correlations. Recent research on the Ir-Sb binary system revealed an extended buckled-honeycomb vacancy (BHV) order. Superconductivity arises by suppressing BHV ordering through high-pressure growth with excess Ir atoms or Rh substitution, yet the superconducting pairing nature remains unknown.

View Article and Find Full Text PDF

Collision of cesium atoms on helium nanodroplets: Unraveling mechanisms for surface capture at experimental velocities.

J Chem Phys

November 2024

Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Evry-Courcouronnes 91025, France.

The collision of cesium atoms on the surface of helium nanodroplets (HNDs) containing 1000 atoms is described by the ZPAD-mPL approach, a zero-point averaged dynamics (ZPAD) method based on a He-He pseudopotential adjusted to better reproduce the total energy of He1000. Four types of collisional patterns were identified depending on the initial projectile speed v0 and impact parameter b. At the lowest speeds (v0 ≲ 250 m s-1), Cs atoms are softly captured by the HND surface, while at the highest ones (v0 ≳ 500-600 m s-1), Cs atoms can travel through the droplet and move away.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!