Long-term depletion of the stratospheric ozone layer contributes to an increase in terrestrial solar ultraviolet-B radiation. This has deleterious effects on living organisms, such as DNA damage. When exposed to elevated ultraviolet-B radiation (UV-B; 280-315 nm), plants display a wide variety of physiological and morphological responses characterized as acclimation and adaptation. Here we show, using special sun simulators, that elevated solar UV-B doses increase the frequency of somatic homologous DNA rearrangements in Arabidopsis and tobacco plants. Increases in recombination are accompanied by a strong induction of photolyase and Rad51 gene expression. These genes are putatively involved in major DNA repair pathways, photoreactivation and recombination repair. In mutant Arabidopsis plants that are deficient in photoreactivating ultraviolet-induced cyclobutane pyrimidine dimers, recombination under elevated UV-B regimes greatly exceeds wild-type levels. Our results show that homologous recombination repair pathways might be involved in eliminating UV-B-induced DNA lesions in plants. Thus, increases in terrestrial solar UV-B radiation as forecasted for the early 21st century may affect genome stability in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/35017595 | DOI Listing |
Plants (Basel)
January 2025
Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.
The depletion of the ozone layer has resulted in elevated ultraviolet-B (UV-B) radiation levels, posing a significant risk to terrestrial plant growth. Pall. (), adapted to high-altitude and high-irradiation environments, has developed unique adaptive mechanisms.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, College of Life Science, Yulin University, Yulin 719000, China.
The genus of L. are Tertiary-relict desert sand-fixing plants, which are an important forage and agricultural product, as well as an important source of medicinal and woody vegetable oil. In order to provide a theoretical basis for better protection and utilization of species in the L.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.
Elevated levels of reactive oxygen species (ROS) are caused by ultraviolet B radiation (UV-B) stress. In response, plants strengthen their cell membranes, impeding photosynthesis. Additionally, UV-B stress initiates oxidative stress within the antioxidant defense system and alters secondary metabolism, particularly by increasing the quantity of UV-absorbing compounds such as flavonoids.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China.
Multi-omics studies have shown that strigolactone modulates phenolic acid accumulation in the leaves of R. chrysanthum and can enable it to cope with UV-B stress. UV-B stress is an abiotic stress that plants will inevitably suffer during growth and can seriously affect the normal physiological state of plants.
View Article and Find Full Text PDFFoods
November 2024
College of Food Science and Engerning, Yangzhou University, Yangzhou 210095, China.
Abiotic stress not only elevates the synthesis of secondary metabolites in plant sprouts but also boosts their antioxidant capacity. In this study, the mechanisms of flavonoid biosynthesis and antioxidant systems in buckwheat sprouts exposed to ultraviolet-B (UV-B) radiation were investigated. The findings revealed that UV-B treatment significantly increased flavonoid content in buckwheat sprouts, with 3-day-old sprouts exhibiting a flavonoid content 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!