Integrin alpha(3)-subunit expression modulates alveolar epithelial cell monolayer formation.

Am J Physiol Lung Cell Mol Physiol

Division of Pulmonary and Critical Care Medicine and Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, California 90033, USA.

Published: July 2000

We investigated expression of the alpha(3)-integrin subunit by rat alveolar epithelial cells (AECs) grown in primary culture as well as the effects of monoclonal antibodies with blocking activity against the alpha(3)-integrin subunit on AEC monolayer formation. alpha(3)-Integrin subunit mRNA and protein were detectable in AECs on day 1 and increased with time in culture. alpha(3)- and beta(1)-integrin subunits coprecipitated in immunoprecipitation experiments with alpha(3)- and beta(1)-subunit-specific antibodies, consistent with their association as the alpha(3)beta(1)-integrin receptor at the cell membrane. Treatment with blocking anti-alpha(3) monoclonal antibody from day 0 delayed development of transepithelial resistance, reduced transepithelial resistance through day 5 compared with that in untreated AECs, and resulted in large subconfluent patches in monolayers viewed by scanning electron microscopy on day 3. These data indicate that alpha(3)- and beta(1)-integrin subunits are expressed in AEC monolayers where they form the heterodimeric alpha(3)beta(1)-integrin receptor at the cell membrane. Blockade of the alpha(3)-integrin subunit inhibits formation of confluent AEC monolayers. We conclude that the alpha(3)-integrin subunit modulates formation of AEC monolayers by virtue of the key role of the alpha(3)beta(1)-integrin receptor in AEC adhesion.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.2000.279.1.L183DOI Listing

Publication Analysis

Top Keywords

alpha3-integrin subunit
20
alpha3beta1-integrin receptor
12
aec monolayers
12
alveolar epithelial
8
monolayer formation
8
alpha3- beta1-integrin
8
beta1-integrin subunits
8
receptor cell
8
cell membrane
8
transepithelial resistance
8

Similar Publications

Glioblastoma (GBM) is a devastating brain cancer for which new effective therapies are urgently needed. GBM, after an initial response to current treatment regimens, develops therapeutic resistance, leading to rapid patient demise. Cancer cells exhibit an inherent elevation of endoplasmic reticulum (ER) stress due to uncontrolled growth and an unfavorable microenvironment, including hypoxia and nutrient deprivation.

View Article and Find Full Text PDF

The gut represents an important site of colonization of the commensal bacterium (group B Streptococcus or GBS), which can also behave as a deadly pathogen in neonates and adults. Invasion of the intestinal epithelial barrier is likely a crucial step in the pathogenesis of neonatal infections caused by GBS belonging to clonal complex 17 (CC17). We have previously shown that the prototypical CC17 BM110 strain invades polarized enterocyte-like cells through their lateral surfaces using an endocytic pathway.

View Article and Find Full Text PDF

The integrin subunit α3 (ITGA3) is a member of the integrin alpha chain protein family, which could promote progression, metastasis, and invasion in some cancers. Still, its function in the tumor microenvironment (TME), cancer prognosis, and immunotherapy remains unclear. A multifaceted analysis of ITGA3 in pan-cancer utilizing various databases and online web tools revealed ITGA3 was aberrantly expressed in tumor tissues and upregulated in most cancers, which may be related to ITGA3 genomic alterations and methylation modification.

View Article and Find Full Text PDF

Integrin subunit α3 (ITGA3) is a member of the integrin family and interacts with extracellular matrix proteins. However, there have been few reports regarding the role of ITGA3 in papillary thyroid cancer. The expression levels of ITGA3 were firstly analyzed by bioinformatics tools and experiments, followed by evaluating its prognostic significance in papillary thyroid cancer patients using Kaplan-Meier, receiver operating characteristic, and Cox regression analyses.

View Article and Find Full Text PDF

SOX10 deficiency-mediated LAMB3 upregulation determines the invasiveness of MAPKi-resistant melanoma.

Oncogene

February 2024

Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.

Melanoma that develops adaptive resistance to MAPK inhibitors (MAPKi) through transcriptional reprograming-mediated phenotype switching is associated with enhanced metastatic potential, yet the underlying mechanism of this improved invasiveness has not been fully elucidated. In this study, we show that MAPKi-resistant melanoma cells are more motile and invasive than the parental cells. We further show that LAMB3, a β subunit of the extracellular matrix protein laminin-332 is upregulated in MAPKi-resistant melanoma cells and that the LAMB3-Integrin α3/α6 signaling mediates the motile and invasive phenotype of resistant cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!