Elongation factor G (EF-G) is a large, five domain GTPase that catalyses the translocation of the tRNAs on the bacterial ribosome at the expense of GTP. In the crystal structure of GDP-bound EF-G, domain 1 (G domain) makes direct contacts with domains 2 and 5, whereas domain 4 protrudes from the body of the molecule. Here, we show that the presence of both domains 4 and 5 is essential for tRNA translocation and for the turnover of the factor on the ribosome, but not for rapid single-round GTP hydrolysis by EF-G. Replacement of a highly conserved histidine residue at the tip of domain 4, His583, with lysine or arginine decreases the rate of tRNA translocation at least 100-fold, whereas the binding of the factor to the ribosome, GTP hydrolysis and P(i) release are not affected by the mutations. Various small deletions in the tip region of domain 4 decrease the translocation activity of EF-G even further, but do not block the turnover of the factor. Unlike native EF-G, the mutants of EF-G lacking domains 4/5 do not interact with the alpha-sarcin stem-loop of 23 S rRNA. These mutants are not released from the ribosome after GTP hydrolysis or translocation, indicating that the contact with, or a conformational change of, the alpha-sarcin stem-loop is required for EF-G release from the ribosome.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.2000.3886DOI Listing

Publication Analysis

Top Keywords

gtp hydrolysis
12
elongation factor
8
trna translocation
8
turnover factor
8
factor ribosome
8
ribosome gtp
8
alpha-sarcin stem-loop
8
ef-g
7
ribosome
6
domain
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!