Fragile X syndrome is caused by the absence of the fragile X mental-retardation protein (FMRP). FMRP and the fragile X-related proteins 1 and 2 (FXR1P and FXR2P) form a gene family with functional similarities, such as RNA binding, polyribosomal association and nucleocytoplasmic shuttling. In a previous study, we found that FMRP and FXR1P shuttle between cytoplasm and nucleoplasm, while FXR2P shuttles between cytoplasm and nucleolus. The nuclear and nucleolar-targeting properties of these proteins were investigated further. Here, we show that FXR2P contains in its C-terminal part, a stretch of basic amino acids 'RPQRRNRSRRRRFR' that resemble the nucleolar-targeting signal (NoS) of the viral protein Rev. This particular sequence is also present within exon 15 of the FXR1 gene. This exon undergoes alternative splicing and is therefore only present in some of the FXR1P isoforms. We investigated the intracellular distribution of various FXR1P isoforms with (iso-e and iso-f) and without (iso-d) the potential NoS in transfected COS cells treated with the nuclear export inhibitor leptomycin-B. Both iso-e and iso-f showed a nucleolar localization, as observed for FXR2P; iso-d was detected in the nucleo-plasm outside the nucleoli. Further, when a labelled 16-residue synthetic peptide corresponding to the NoS of FXR1P was added to human fibroblast cultures a clear nucleolar signal was observed. Based on these data we argue that the intranuclear distribution of FXR2P and FXR1P isoforms is very likely to be mediated by a similar NoS localized in their C-terminal region. This domain is absent in some FXR1P isoforms as well as in all FMRP isoforms, suggesting functional differences for this family of proteins, possibly related to RNA metabolism in different tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/9.10.1487DOI Listing

Publication Analysis

Top Keywords

fxr1p isoforms
16
fragile x-related
8
x-related proteins
8
fxr1p
8
proteins fxr1p
8
fxr1p fxr2p
8
nucleolar-targeting signal
8
iso-e iso-f
8
fxr2p
6
proteins
5

Similar Publications

FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice.

View Article and Find Full Text PDF

The Fragile X-Related 1 gene (FXR1) is a paralog of the Fragile X Mental Retardation 1 gene (FMR1), whose absence causes the Fragile X syndrome, the most common form of inherited intellectual disability. FXR1P plays an important role in normal muscle development, and its absence causes muscular abnormalities in mice, frog, and zebrafish. Seven alternatively spliced FXR1 transcripts have been identified and two of them are skeletal muscle-specific.

View Article and Find Full Text PDF

FMRP targets distinct mRNA sequence elements to regulate protein expression.

Nature

December 2012

Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York 10065, USA.

Fragile X syndrome (FXS) is a multi-organ disease that leads to mental retardation, macro-orchidism in males and premature ovarian insufficiency in female carriers. FXS is also a prominent monogenic disease associated with autism spectrum disorders (ASDs). FXS is typically caused by the loss of fragile X mental retardation 1 (FMR1) expression, which codes for the RNA-binding protein FMRP.

View Article and Find Full Text PDF

Background: The Fragile X Mental retardation-Related 1 (FXR1) gene belongs to the fragile X related family, that also includes the Fragile X Mental Retardation (FMR1) gene involved in fragile X syndrome, the most common form of inherited mental retardation. While the absence of FMRP impairs cognitive functions, inactivation of FXR1 has been reported to have drastic effects in mouse and xenopus myogenesis. Seven alternatively spliced FXR1 mRNA variants have been identified, three of them being muscle specific.

View Article and Find Full Text PDF

Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of expression of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein with high specificity for G-quartet RNA structure. FMRP is involved in several steps of mRNA metabolism: nucleocytoplasmic trafficking, translational control and transport along dendrites in neurons. Fragile X Related Protein 1 (FXR1P), a homologue and interactor of FMRP, has been postulated to have a function similar to FMRP, leading to the hypothesis that it can compensate for the absence of FMRP in Fragile X patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!